Автор: Пользователь скрыл имя, 18 Ноября 2011 в 20:57, курсовая работа
Данная курсовая работа посвящена изучению метода средних величин. В средних величинах отображаются важнейшие показатели, характеризующие общественные явления, такие как товарооборот, товарные запасы, цены, заработная плата, рождаемость. Средними величинами характеризуются качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др. Правильное понимания сущности средней через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического и социального развития. Метод средних величин находит свое применение при статистических исследованиях в любой области.
ВВЕДЕНИЕ 3
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 4
1.1 СРЕДНИЕ ВЕЛИЧИНЫ В ЭКОНОМИЧЕСКОМ АНАЛИЗЕ 4
1.2УСЛОВИЯ ПРИМЕНЕНИЯ СРЕДНИХ ВЕЛИЧИН В АНАЛИЗЕ 8
1.3ВИДЫ СРЕДНИХ ВЕЛИЧИН. 10
1.3.1 СРЕДНЯЯ АРИФМЕТИЧЕСКАЯ 13
1.3.2 СРЕДНЯЯ ГАРМОНИЧЕСКАЯ 17
1.3.3 СРЕДНЯЯ ГЕОМЕТРИЧЕСКАЯ 20
1.3.4 СРЕДНЯЯ КВАДРАТИЧЕСКАЯ И СРЕДНЯЯ КУБИЧЕСКАЯ 21
1.3.5 СТРУКТУРНЫЕ СРЕДНИЕ 23
Среднее
время, затраченное = ------------------------------
на одну деталь
Число деталей, изготовленных каждым рабочим, определяется отношением всего времени работы к среднему времени, затраченному на одну деталь. Тогда среднее время, необходимое для изготовления одной детали, равно:
Это же решение можно представить иначе:
Таким образом, формула для расчета средней гармонической простой будет иметь вид:
Средняя гармоническая взвешенная:
, где f=w/x
Например,
необходимо определить среднюю цену
1 кг картофеля по трем коммерческим
магазинам (таблица 5):
Таблица 5 - Цена и выручка от реализации по трем коммерческим магазинам.
Номер магазина | Цена картофеля руб./кг, х | Выручка от реализации,
млн руб.,
w |
Частота (количество
реализованных единиц), кг
f=w/x |
1
2 3 |
800
1000 900 |
24
15 18 |
30000
15000 20000 |
Итого | - | 57 | 65000 |
Исчисление
средней гармонической
Средняя геометрическая применяется в тех случаях, когда индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.
Средняя геометрическая исчисляется извлечением корня степени и из произведений отдельных значений — вариантов признака х:
где n — число вариантов;
П — знак произведения.
Наиболее
широкое применение средняя геометрическая
получила для определения средних темпов
изменения в рядах динамики, а также в
рядах распределения.
В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных или кубических единицах измерения. Тогда применяется средняя квадратическая (например, для вычисления средней величины стороны и квадратных участков, средних диаметров труб, стволов и т.п.) и средняя кубическая (например, при определении средней длины стороны и кубов).
Средняя квадратическая простая является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число:
,
где x1,x2,…xn- значения признака, n- их число.
Средняя квадратическая взвешенная:
,
где f-веса.
Средняя кубическая простая является кубическим корнем из частного от деления суммы кубов отдельных значений признака на их число:
,
где
x1,x2,…xn- значения признака,
n- их число.
Средняя кубическая взвешенная:
,
где f-веса.
Средние квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко пользуется статистика средней квадратической, но не из самих вариантов x, и из их отклонений от средней (х — ) при расчете показателей вариации.
Средняя
может быть вычислена не для всех,
а для какой-либо части единиц
совокупности. Примером такой средней
может быть средняя прогрессивная
как одна из частных средних, вычисляемая
не для всех, а только для "лучших"
(например, для показателей выше или ниже
средних индивидуальных).
Для
характеристики структуры вариационных
рядов применяются так
Мода – значение случайной величины встречающейся с наибольшей вероятностью. В дискретном вариационном ряду это вариант имеющий наибольшую частоту.
В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по цене в рублях:
44; 43; 44; 45; 43; 46; 42; 46;43;
Так как чаще всего встречается цена 43 рубля, то она и будет модальной.
В интервальных вариационных рядах моду определяют приближенно по формуле
,
где - начальное значение интервала, содержащего моду;
- величина модального интервала;
- частота модального интервала;
- частота интервала,
- частота интервала, следующего за модальным.
Место нахождения модального интервала определяют по наибольшей частоте (таблица 6).
Таблица
6 - Распределение предприятий по
численности промышленно - производственного
персонала характеризуется следующими
данными
Группы предприятий по числу работающих, чел | Число предприятий |
100 — 200 | 1 |
200 — 300 | 3 |
300 — 400 | 7 |
400 — 500 | 30 |
500 — 600 | 19 |
600 — 700 | 15 |
700 — 800 | 5 |
ИТОГО | 80 |
В этой задаче наибольшее число предприятий (30) имеет численность работающих от 400 до 500 человек. Следовательно, этот интервал является модальным интервалом ряда распределения.
Введем следующие обозначения:
=400, =100, =30, =7, =19
Подставим эти значения в формулу моды и произведем вычисления:
Мода
применяется для решения
Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значения изучаемого признака). Медиану иногда называют серединной вариантой, т.к. она делит совокупность на две равные части.
В дискретных вариационных рядах с нечетным числом единиц совокупности - это конкретное численное значение в середине ряда. Так в группе студентов из 27 человек медианным будет рост у 14-го, если они выстроятся по росту. Если число единиц совокупности четное, то медианой будет средняя арифметическая из значений признака у двух средних членов ряда. Так, если в группе 26 человек, то медианным будет рост средний 13-го и 14-го студентов.
В интервальных вариационных рядах медиана определяется по формуле:
, где
x0 - нижняя гранича медианного интервала;
iMe - величина медианного интервала;
Sme-1 - сумма накопленных частот до медианного интервала;
fMe - частота медианного интервала.
Пример:
Таблица
7 - Распределение предприятий
по численности промышленно
Группы предприятий по числу рабочих, чел. | Число предприятий | Сумма накопленных частот |
100 — 200 | 1 | 1 |
200 — 300 | 3 | 4 (1+3) |
300 — 400 | 7 | 11 (4+7) |
400 — 500 | 30 | 41 (11+30) |
500 — 600 | 19 | — |
600 — 700 | 15 | — |
700 — 800 | 5 | — |
ИТОГО | 80 |
Определим прежде всего медианный интервал. В данной задаче сумма накопленных частот, превышающая половину всех значений (41), соответствует интервалу 400 - 500. Это и есть медианный интервал, в котором находится медиана. Определим ее значение по приведенной выше формуле.
Известно, что:
Следовательно,
Cоотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если M0<Me< имеет место правосторонняя асимметрия. Если же <Me<M0 - левосторонняя асимметрия ряда. По приведенному примеру можно сделать заключение, что наиболее распространенная численность рабочих является порядка 467,6 чел. В то же время более половины предприятий имеют численность рабочих более 496,6 чел., при среднем уровне 510 чел. чел. Из соотношения этих показателей следует сделать вывод о правосторонней асимметрии распределения предприятий по численности промышленно - производственного персонала.
Мода и медиана в отличие от степенных средних являются конкретными характеристиками, их значение имеет какой-либо конкретный вариант в вариационном ряду.
Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного распределения частот вариационного ряда. Поэтому соотношение моды, медианы и средней арифметической позволяет оценить ассиметрию ряда распределения.
Мода
и медиана, как правило, являются
дополнительными к средней
Аналогично
медиане вычисляются значения признака,
делящие совокупность на четыре равные
(по числу единиц) части — квартели,
на пять равных частей — квинтели, на
десять частей — децели, на сто частей
— перцентели.
Расчетная часть
Информация о работе Средние величины в экономическом анализе