Автор: Пользователь скрыл имя, 07 Мая 2012 в 15:50, доклад
Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация об индивидуально-психологических особенностях испытуемых. Вообще психологические исследования обычно строятся с опорой на количественные данные.
На рис. 6 показаны только результаты сглаживания. Следует обратить внимание на то, как различаются отрезки прямой по их наклону по отношению к оси абсцисс. Данные Толи изображены пунктирной прямой.
Таковы способы обработки задач третьего типа.
Задачи, встающие перед психологом, который работает в области психологической диагностики, составляют четвертый тип задач. Они относятся к конструированию диагностических методик, к их применению и обработке. Американская психологическая ассоциация (АПА) периодически издает «Стандартные требования к педагогическим и психологическим тестам», специальный кодекс
требований к диагностическим методикам; это пособие полезно как для авторов методик, так и для тех, кто методиками пользуется.
Некоторые из этих требований могут считаться дискуссионными, но полезность кодекса в целом несомненна. Его выполнение, с одной стороны, обеспечивает объективность методик и их обоснованность, а с другой — препятствует проникновению в арсенал методик психологической диагностики дилетантских поделок, произвольных наборов всевозможных заданий, заимствованных из популярных журналов или сочиненных самим автором. Самые общие и самые необходимые к исполнению требования можно было бы свести всего к двум: диагностические методики должны быть надежными и валидными. Значение этих терминов было дано в предыдущих главах. Реализация этих требований осуществляется посредством прочно вошедших в психологическую диагностику статистических методов[2].
Чтобы получить коэффициент надежности, характеризующий гомогенность методики, ее внутреннюю согласованность, прибегают к приему, называемому расщеплением. Эксперимент проводится с выборкой желательно порядка 100, но не менее 50 испытуемых. Полученные от каждого участника выборки ответы на вопросы или решения заданий делятся на четные и нечетные — по их нумерации в методике. По каждой половинке методики выписывается число правильно выполненных каждым испытуемым заданий. Два эти ряда коррелируют между собой.
Допустим, что методика состоит из 24 заданий. Тогда максимальное число выполненных заданий в каждой половинке будет равно 12. Приводим результаты первых 16 испытуемых и технику вычисления коэффициента надежности (гомогенности) р (табл. 8).
Таблица 8
ВЫЧИСЛЕНИЕ КОЭФФИЦИЕНТА НАДЕЖНОСТИ МЕТОДИКИ А (ГОМОГЕННОСТЬ)
| Правильно решены | Ранг заданий |
|
| ||
Испыту- | задания |
|
| d | d2 | |
емые | четные | нечетные | четных | нечетных |
|
|
А | 10 | 11 | 10,5 | 13,5 | 3 | 9 |
Б | 8 | 8 | 8 | 8,5 | 0,5 | 0,25 |
В | 3 | 7 | 3 | 6,5 | 3,5 | 12,25 |
Г | 3 | 3 | 3 | 2 | 1 | 1 |
д | 11 | 12 | 12,5 | 15,5 | 3 | 9 |
Е | 12 | 10 | 15 | 11 | 4 | 16 |
Ж | 12 | 12 | 15 | 15,5 | 0,5 | 0,25 |
3 | 9 | 8 | 9 | 8,5 | 0,5 | 0,25 |
Продолжение табл. 8
| Правильно решены | Ранг . | !аданий |
|
| |
Испыту- | задания |
|
| d | сР | |
емые | четные | нечетные | четных | нечетных |
|
|
И | 7 | 7 | 6,5 | 6,5 | 0 | 0 |
К | 6 | 6 | 6 | 6 | 0 | 0 |
Л | 7 | 5 | 6,5 | 4 | 2,5 | 6,25 |
М | 11 | 10 | 12,5 | 11 | 1,5 | 2,25 |
Н | 3 | 4 | 3 | 3 | 1 | 1 |
0 | 2 | 2 | 1 | 1 | 0 | 0 |
П | 10 | 11 | 10,5 | 13,5 | 3 | 9 |
Р | 12 | 10 | 15 | 11 | 4 | 16 |
Проделана обычная ранговая корреляция. По таблице уровней значимости ро99 = 0,64; полученный коэффициент превышает эту величину. Принято считать, что коэффициент надежности не должен быть ниже 0,8. Полученный коэффициент удовлетворяет этому требованию[3].
Есть поправочная формула Спирмена—Брауна к коэффициенту надежности-гомогенности, получаемому путем расщепления. Поскольку при прочих равных условиях получаемый коэффициент будет тем выше, чем больше заданий содержится в методике, следует принять во внимание, что прием расщепления уменьшает число заданий вдвое — на этом основывается данный прием. Поправочная формула
вычисленный при коррелировании двух половинок методики. Если этот последний равен 0,88, то после поправки Спирмена—Брауна коэффициент будет равен 0,94.
Поправочную формулу Спирмена—Брауна можно применять только в тех случаях, когда методика делится на половинки (расщепление). Если же в методике в процессе обработки не меняют число заданий, то поправочная формула не применяется.
Величина коэффициента надежности-гомогенности зависит от социально-психологических особенностей той выборки, по результатам испытания которой этот коэффициент устанавливался. Поэтому при опубликовании методики, приводя ее основные характеристики, автору следует указать, на каком контингенте проводилась проверка надежности.
При вычислении коэффициента надежности методики, характеризующего стабильность данных, получаемых с помощью этой методики, первый коррелируемый ряд представляет собой результаты первого, а второй — повторного испытания: его рекомендуют проводить примерно через шесть недель после первого. При необходимости этот срок может изменяться. Эти два ряда коррелируют между собой. Корреляция проводится по обычным правилам, о них сообщалось выше. Это прием «тест-ретест».
Для установления надежности методики существуют и некоторые другие приемы. Так, для получения коэффициента надежности практикуется прием параллельных форм. Авторы, конструирующие методику, создают две ее формы; условно назовем их формой А и формой Б. Обе формы должны быть однородны по психологической направленности, по доступности содержания заданий и по их трудности. В одном варианте формы А и Б предъявляются испытуемым одна за другой, причем в одной половине выборки испытуемым сначала предлагается форма А, а за ней форма 5, а в другой половине выборки, наоборот, сначала форма Б, а затем А. Результаты, полученные по той и другой форме, коррелируют между собой, и полученный коэффициент трактуется как коэффициент надежности. Нетрудно заметить, что этот прием близок приему расщепления с той разницей, что методика как бы удвоена и сравниваются не четные и нечетные задания, а две половины этой удвоенной методики. Это дает право трактовать получаемый коэффициент скорее как коэффициент надежности-гомогенности, а не надежности-стабильности. Поскольку проверке подвергается набор заданий в целом, поправочную формулу Спирмена—Брауна применять не следует.
Другой вариант использования приема параллельных форм состоит- в том, что одна из форм предлагается испытуемым через какой-то интервал времени после другой, что сближает этот прием с приемом «тест-ретест». При проведении этого приема необходимо убедиться в том, что обе формы высоко коррелируют между собой, согласно только что изложенному приему по надежности-Гомогенности. Результаты обоих испытаний затем коррелируют. Полученный коэффициент может трактоваться как коэффициент надежности-стабильности. Выше указывалось, что в приеме «тест-ретест» рекомендуется интервал между испытаниями шесть недель. Для этого варианта приема параллельных форм этот интервал может быть уменьшен, так как испытуемый при выполнении заданий не сможет опираться на память.
Из предшествующего изложения явствует, что в приемах установления надежности главную роль играет статистический метод корреляций. Несколько по-иному обстоят дела при проверке валид-ности методики.
Если показатели того критерия, который взят для получения коэффициента внешней валидности, имеют примерно ту же меру рассеяния, меру вариативности, что и мера рассеяния показателей самой методики, то применение корреляции правомерно. Допустим, автор методики намерен установить ее валидность, сравнивая успешность выполнения методики с учебной деятельностью. Валидность устанавливается на выборке школьников. В этом случае, как показывает практика, суммарные оценки за одну учебную четверть или за полугодие покажут примерно тот же размах колебаний, что и размах колебаний по методике; методика состоит из 20 заданий, и при ее выполнении показан размах колебаний от 3 до 20. Суммарные оценки успеваемости, после того как они подсчитаны за полгода, имеют размах колебаний порядка от 14 до 36. Такие ряды вполне возможно коррелировать.
Но в некоторых случаях для получения коэффициента валидности приходится сравнивать успешность выполнения диагностической методики, допустим, в тех же пределах колебаний — от 3 до 20, и производственные достижения, которые имеют всего три ступени оценок: ниже средних, средние и выше средних. Корреляцией в этом случае воспользоваться нельзя, если иметь в виду линейную корреляцию, о которой идет речь в этой главе. Однако могут быть использованы некоторые другие статистические методы, показывающие существование или отсутствие связи между распределением двух рядов численностей. Простейший способ получения коэффициента валидности в описываемом случае и в других подобных, случаях — метод «хи-квадрат». Всех испытуемых, прошедших диагностический эксперимент, делят на три равные группы — их и сопоставляют с тремя группами, на которые были поделены испытуемые при оценке их профессиональной успеваемости.
В изучаемой выборке — 90 человек. Они делятся по профессиональным достижениям на три группы: первая — в ней 30 испытуемых — лица с профессиональными достижениями ниже среднего уровня; вторая — 40 испытуемых — это лица со средними достижениями, и третья — 20 испытуемых, их достижения выше среднего уровня. Первая группа составляет 33,3% выборки, вторая — 44,4 и третья — 22,2%.
Приводим технику вычисления (табл. 9).
Таблица 9
Психологическая оценка |
| Оценка профессиональных достижений | Всего | |||
| ниже среднего |
| средняя | выше среднего | ||
Ниже среднего | 20 | А (10) | 5 | В (13,3) | С 5 (6,7) | 30 |
Средняя | 5 | D (10) | 15 | Е (13,3) | F 10 (6,7) | 30 |
Выше среднего | 5 | G (10) | 20 | н (13,3) | J 5 (6,7) | 30 |
Итого: |
| 30 |
| 40 | 20 | 90 |