Простейшие методы статистической обработки материалов психологических исследований

Автор: Пользователь скрыл имя, 07 Мая 2012 в 15:50, доклад

Описание работы

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация об индивидуально-психологических особенностях испытуемых. Вообще психологические исследования обычно строятся с опорой на количественные данные.

Работа содержит 1 файл

психолог_исследования.doc

— 909.50 Кб (Скачать)

Вот пример. После диагностических испытаний уровня умствен­ного развития учеников 6-го класса полученные данные были упо­рядочены, т.е. расположены в последовательности от меньшей ве­личины к большей. Испытания проходили 18 учащихся (табл. 2).

 

Процедура ранжирования состоит в следующем. Все числа ряда в их последовательности получают по своим. порядковым местам присваи­ваемые им ранги. Если какие-нибудь числа повторяются, то всем по­вторяющимся числам присваивается один и тот же ранг — средний из общей суммы занятых ими ранговых мест. Так, числу 28 в изучаемом ряду присвоен ранг 2. Затем следуют трижды повторяющиеся числа 39. На них приходятся занятые ими ранговые места 3, 4, 5. Поэтому этим числам присваивается один и тот же средний ранг, в дан­ном случае — 4. Поскольку места до 5-го включительно заняты, то следующее число получает ранг 6 и т.д.

При обработке ряда, не имеющего признаков нормального рас­пределения — непараметрического ряда, — для величины, которая выражала бы его центральную тенденцию, более всего пригодна ме­диана, т.е. величина, расположенная в середине ряда. Ее определя­ют по срединному рангу по формуле Ме = (п + 1)/2, где Ме — оз­начает медиану, п — как в ранее приводившихся формулах — число членов ряда. При нечетном числе членов ряда ранговая медиана — целое число, при нечетном число — с 0,5. Заметим, что числовое значение медианы может и не быть в составе самого обрабатывае­мого ряда.

Возьмем к примеру ряд в семь членов:               3—5—6—7—9—10—11.

Проранжировав его, имеем:                                           1—2—3—4—5—6—7.

Ранговая медиана в таком ряду равна: Ме = (7 + 1)/2 = 4, этот ранг приходится на величину 7.

Возьмем ряд в восемь членов:                             3—5—6—7—9—10—11—12.

Проранжировав его, имеем:                                           1—2—3—4—5—6—7—8.

Ранговая медиана в этом ряду равна: Ме = (8 + 1)/2 = 4,5.

Этому рангу соответствует середина между двумя величинами, имеющими ранг 4 и ранг 5, т.е. между 7 и 9. Медиана этого ряда равна: Ме = (7 + 9)/2 = 8.Следует обратить внимание на то, что величины 8 в составе ряда нет, но таково значение медианы этого ряда.

Вернемся к изучаемому ряду. Он состоит из 18 членов. Его ран­говая медиана равна: Ме = (18 + 1)/2 = 9,5.

Она расположится между 9-й и 10-й величиной ряда. 9-я величи­на — 52, 10-я — 68. Медиана занимает срединное место между ними, следовательно, Ме = (52 + 68)/2 = 60.

По обе стороны от этой величины находится по 50% величин ряда.

Характеристику распределения численностей в непараметриче­ском ряду можно получить из отношения его квартилей. Квартилью называется величина, отграничивающая 1/4 всех величин ряда. Квартиль первая — ее обозначение Q\ — вычисляется по формуле:

Это полусумма первого и последнего рангов первой — левой от медианы половины ряда;

квартиль третья, обозначаемая <3з. вычисляется по формуле:

т.е. как полусумма первого и последнего рангов второй, правой от ме­дианы, половины ряда. Берутся порядковые значения рангов по их по­следовательности в ряду. В обрабатываемом ряду Qi - (1+9)/2 = 5, <2з = (Ю+ 18)/2 = 14.

Рангу 5 в этом ряду соответствует величина 39, а рангу 14 — 70. Следовательно, в данном ряду Qi = 39, a Q3 = 70.

Для характеристики распределения в непараметрическом ряду вычисляется среднее квартильное отклонение, обозначаемое Q.

Формула для Q такова: Q = (Qz ~ Q\)/2.

Для обрабатываемого ряда Q - (70 - 39)/2 = 15,5.

Были рассмотрены статистическая обработка параметрического ряда (~х и а), статистическая обработка непараметрического ряда (Ме и Q). Параметрический ряд относится к шкале интервалов, не­параметрический — к шкале порядка. Но встречаются также ряды, относящиеся к шкале наименований. Наиболее краткая характери­стика такого ряда может быть получена с помощью моды, величи­ны, которая выражает наивысшее числовое значение величин дан­ного ряда, при п — числе членов ряда. Следует заметить, что моду можно лишь условно считать выражением центральной тенденции в ряду, относящемуся к шкале наименований. Она выражает наибо­лее т и п и ч н у ю величину ряда.

Рассмотрим подробнее пример, приведенный выше (С. 242). Там речь шла об участниках некой конференции; в их числе были 3 англичанина, 2 датчанина, 5 немцев, 3 русских и 1 француз. Мода в данном ряду приходится на участников конференции — немцев. Число членов ряда равно — 13, а мода — Мо = 5.

Итак, мы рассмотрели статистические методы, применяющиеся для задач первого типа.

Второй тип задач. Психологу в его повседневной практической и исследовательской работе приходится искать ответы на различные вопросы. Предположим, что проведены диагностические испытания умственного развития у школьников шестых классов городской и сельской школ: можно ли в дальнейшем рассматривать обе школь­ные выборки как принадлежащие одной совокупности? По поводу неодинаковых условий обучения в городской и сельской школах вы­сказано немало противоречивых суждений. Психолог в данном слу­чае намерен опираться на экспериментальные факты. Чтобы прийти к какому-то решению, целесообразно проанализировать полученный экспериментальный материал. Это достаточно часто встречающаяся задача, встречаются и такие, где приходится решать тот же вопрос относительно нескольких, а не двух выборок. Это и есть задачи второго типа.

Перед психологом два ряда численностей. Прежде всего нужно установить, на какие статистические методы опираться — на пара­метрические или непараметрические? Применять параметрические методы следует в том случае, если оба ряда имеют распределение, не отличающееся от нормального. Если же один из рядов не соот­ветствует этому требованию, то применение параметрических мето­дов противопоказано.

Положим, оба ряда показывают распределение, допускающее применение параметрических методов. Сравнение величин цен­тральных тенденций — в данном случае их представляют средние арифметические — не даст ответа на вопрос о том, относятся ли выборки к одной совокупности. Почти безошибочно можно утвер­ждать, что средние арифметические не будут тождественными, но этого явно недостаточно для ответа на поставленный вопрос, ответ не был бы получен, даже если бы средние арифметические оказа­лись равными. Для данного случая более всего подходит сравнение выборок по критерию t Стьюдента.

Перед тем как ознакомиться с техникой вычислений и интерпре­таций результатов, получаемых при работе с критерием t Стьюден­та, необходимо остановиться на некоторых статистических терми­нах; они постоянно встречаются в прикладной статистике.

В том разделе статистики, где заходит речь о проверке гипотез, постоянно приходится иметь дело с нуль-гипотезой, или нулевойгипотезой. При сравнении двух выборок нуль-гипотеза формулиру­ется следующим образом: между изучаемыми выборками нет разли­чия или, иначе, различие между ними несущественно. Все даль­нейшие расчеты направлены на то, чтобы прийти к заключению верна ли нуль-гипотеза или от нее нужно отказаться, и в действи­тельности существенная разница между выборками имеется. В дру­гих случаях в зависимости от содержания материала меняются формулировки, но вычисления показывают, какова вероятность нуль-гипотезы. Для обозначения нуль-гипотезы используется символ Н0.

Допустим, что разница между выборками имеется. Исследователь встает перед вопросом, насколько существенна эта разница, как часто будет обнаруживаться она в последующем, когда придется работать с подобными же выборками. Самые общие соображения при этом таковы: если разница получена на небольшом материале (числе случаев, охваченных той или другой выборкой), то при по­вторном изучении таких же выборок разницу, возможно, найти и не удастся. Другое дело, если изучаемые выборки не малы. Далее важно, оказалась ли обнаруженная разница значительной. Это рас­суждение и следует иметь в виду, когда в статистике речь идет об уровне значимости полученного коэффициента, параметра и пр. Уровни значимости представлены в специальных таблицах, которые обычно даются в учебниках статистики, есть такие таблицы и в конце этой главы. Какой уровень значимости можно признать удов­летворительным? В психологии и педагогике минимально допусти­мым для отказа от Яо уровнем значимости признается 0,95. Это значит, что расчеты, основанные на математической теории вероят­ности, дают основание утверждать, что при проведении таких же исследований, по крайней мере в 95% случаев, будет получен та­кой же результат, возможно, лишь с несущественными отклонения­ми. В некоторых работах удается получить и более высокие уровни значимости — 0,990 и даже 0,999 (эти же уровни значимости мож­но записать: 0,05; 0,01; 0,001. Записывая уровень 0,95, имеют в ви­ду, что полученные параметры повторяются в 95% случаев, а запи­сывая 0,05, что в 5% случаев они не повторятся; смысл в том и другом случае один и тот же).

А если не получен уровень значимости 0,95? Тогда нужно при­знать, что нуль-гипотезу не следует отвергать. Впрочем, иногда, по задачам исследования признается достаточным и более низкий уро­вень. В некоторых исследованиях цель состоит в том, чтобы прийти к утверждению нуль-гипотезы.

Обращаясь к таблицам уровней значимости, исследователь обна­руживает во многих из них специальный столбец с указанием сте­пеней свободы, относящихся к полученному параметру или коэффициенту. Уровень значимости прямо зависит от того, каким чис­лом степеней свободы обладает данный коэффициент или параметр. Число независимых величин, участвующих в образовании того или другого параметра, называется числом степеней свободы этого па­раметра. Оно равно общему числу величин, по которым вычисляет­ся параметр, минус число условий, связывающих эти величины (Урбах В.Ю. Указ. соч. С. 161). Число степеней свободы и способы его определения всегда даются в окончательных формулах, которы­ми пользуется исследователь при статистической обработке своих материалов.

Рассмотрим пример с двумя выборками, которые, по мнению ис­следователя, можно рассматривать как подлежащие обработке па­раметрическим методом.

Двум группам шестиклассников по 6 человек было дано задание бросать мяч в корзину. Группы обучались по разным программам. Можно ли считать, что разница в программах сказалась на конеч­ной результативности школьников? Для сравнения было взято чис­ло попаданий в корзину. Всего было дано по 10 проб.

Формула вычисления Р.

fd (число степеней свободы) = ni + ri2 -2-6 + 6 2-10.

По таблице уровней значимости t Стьюдента находим t0,95= 2,223.

Существенность различия не доказана, хотя полученное значение t = 1,9 очень близко к требуемому уровню. Принимается Н0. Нель­зя утверждать, что выборки существенно различаются.

Для вычисления t существует несколько формул, различающихся только техникой расчетов.

Сравниваемые выборки могут быть неодинаковыми по объему. Применять параметрические методы можно лишь к материалу, об­ладающему определенными свойствами, о которых говорилось ра­нее. В других случаях следует обращаться к непараметрическим методам.

Ниже будет рассмотрена техника применения критерия Манна— Уитни, непараметрического метода, часто используемого в психоло­гических исследованиях.

Предположим, что психологу нужно решить такую задачу. Есть ли различия между выборками школьников одного и того же клас­са, если одна выборка включает школьников, которые после кон­трольной работы проходили дополнительное обучение по коррекци-онным программам, другая — школьников, такого обучения не про­ходивших? Обе выборки малы, поэтому для проверки гипотез о су­ществовании различий между выборками следует взять мощный критерий. Мощность критерия — это вероятность принятия при его применении правильного решения для отклонения Н0; чем выше эта вероятность, тем больше мощность критерия. Мощность лю­бого критерия увеличивается вместе с увеличением объема сравниваемых выборок, а также со снижением того уровня зна­чимости, на который ориентируется исследователь. Другими словами, если выборки велики, то принятие правильного реше­ния относительно Н0 увеличивается. Ориентация на высокий уровень значимости, например 0,990 или 0,999, предполагает применение достаточно мощного критерия. В рассматриваемом примере выборки малы, а при установлении существенной раз­ницы между ними, т.е. при отказе от Но желательно, чтобы уро­вень значимости был как можно выше, но не ниже 0,95. Формула вычисления критерия Манна—Уитни такова:

или:

В примере сравнению подлежат результаты контрольной работы выборки Л из 4 школьников, проходивших обучение по коррекционным программам, и выборки Б, состоящей из 7 школьников, никако­го коррекционного обучения не проходивших. Последовательность действий, предусматриваемых вычислением всех нужных для реше­ния задачи величин, такова.

1. Выписать в любом порядке число успешно решенных заданий школьниками сначала выборки А, затем выборки Б.

2. Проранжировать число успешно решенных заданий, объединив обе выборки.

3. Найти сумму рангов выборок А и Б раздельно.

Эти три действия дадут все необходимые для вычисления крите­рия данные.

Для проверки расчетов вычисляется:

Имея величины U1 и U2, следует обратиться к таблице уровня значимости. На совмещение строки четвертой со столбцом седьмым находим 3/25. По условиям таблицы, U1 должно быть меньше верх­ней, а U2 — больше нижней величины. Полученные величины по­казывают, что Но отвергается. Можно утверждать, что между вы­борками имеется существенное различие: результаты свидетельст­вуют о преимуществе выборки А.

Попарное сравнение. В предыдущем материале исследователь имел дело с двумя выборками. В обработку они поступают как дваряда чисел; каждый ряд есть результат экспериментов, проведенных с данной выборкой. Однако часто приходится встречаться с мате­риалом, в котором даны два числовых ряда, но оба они получены на одной выборке; сюда относятся исследования, когда эксперименты проводятся до и после какого-то специального воздействия. Цель такого исследования состоит в том, чтобы установить, есть ли дос­таточно существенные изменения и можно ли утверждать, что спе­циальное воздействие имело существенное значение.

Например, психологу было предложено ответить на такой вопрос: влияют ли занятия физкультурой на общее самочувствие занимаю­щихся школьников? Исследование он построил так: школьников просили отмечать на линейной шкале свое самочувствие до занятий физкультурой и после них.

Статистической обработке подлежат попарные сравнения показа­ния одного и того же испытуемого до и после воздействия:

Нуль-гипотеза формулируется так: сравнение рядов до и после воздействия не дает оснований утверждать, что по измеряемому признаку произошли существенные изменения.

Выборка, подвергнутая изучению, состояла из 8 человек.

Начнем с параметрического метода. Будет применен критерий t Стьюдента, его формула для попарного сравнения такова:

Информация о работе Простейшие методы статистической обработки материалов психологических исследований