Простейшие методы статистической обработки материалов психологических исследований

Автор: Пользователь скрыл имя, 07 Мая 2012 в 15:50, доклад

Описание работы

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация об индивидуально-психологических особенностях испытуемых. Вообще психологические исследования обычно строятся с опорой на количественные данные.

Работа содержит 1 файл

психолог_исследования.doc

— 909.50 Кб (Скачать)

Следует рассмотреть типы задач, с которыми чаще всего имеет дело психолог. Соответственно приводятся и статистиче­ские методы, которые приложимы для обработки психологических материалов, направленных на решение этих задач.

Первый тип задач. Психологу нужно дать сжатую и достаточ­но информативную характеристику психологических особенностей какой-то выборки, например, школьников определенного класса. Чтобы подойти к решению этой задачи, необходимо располагать ре­зультатами диагностических испытаний; эти испытания, разумеется, следует заранее спланировать так, чтобы они давали информацию о тех особенностях группы, которые в этом конкретном случае инте­ресуют психолога. Это могут быть особенности умственного разви­тия, психофизиологические особенности, данные об изменении ра­ботоспособности и т.д.

Получив все экспериментальные результаты и материалы наблю­дений, следует подумать о том, как их подать пользователю в ком­пактном виде, чтобы при этом свести к минимуму потерю информа­ции. В перечне статистических методов, используемых при решении подобных задач, обычно находят свое место и параметрические и непараметрические методы, о возможностях применения тех и дру­гих, как было сказано выше, судят по полученному материалу. Об этих статистических методах и их использовании пойдет речь ниже.

Второй тип задач. Это, пожалуй, наиболее часто встречающие­ся задачи в исследовательской и практической деятельности психолога: сравниваются между собой несколько выборок, чтобы установить, являются ли выборки независимыми или принадлежат одной и той же совокупности. Так, проведя эксперименты в восьмых классах двух раз­личных школ, психолог сравнивает эти выборки между собой.

К этому же типу относятся задачи с определением тесноты связи двух рядов показателей, полученных на одной и той же выборке; в такой обработке чаще всего применяют метод корреляций.

Третий тип задач — это задачи, в которых обработке подлежат временные ряды, в них расположены показатели, меняющиеся во времени; их называют также динамическими рядами. В предшест­вующих типах задач фактор времени не принимался во внимание и ма­териал анализировался так, как будто он весь поступил в руки иссле­дователя в одно и то же время. Такое допущение можно оправдать тем, что за тот короткий период времени, который был затрачен на собира­ние материала, он не потерпел существенных изменений. Но психологу приходится работать и с таким материалом, в котором наибольший ин­терес представляют как раз его изменения во времени. Допустим, пси­холог намерен изучить изменение работоспособности школьников в те­чение учебной четверти. В этом случае информативными будут показа­тели, по которым можно судить о динамике работоспособности. Берясь за такой материал, психолог должен понимать, что при анализе дина­мических рядов нет смысла пользоваться средним арифметическим ря­да, так как оно замаскирует нужную информацию о динамике.

В предыдущих главах упоминалось о лонгитюдинальном исследо­вании, т.е. таком, в котором однообразный по содержанию психоло­гический материал по одной выборке собирается в течение дли­тельного времени. Показатели лонгитюда — это также динамиче­ские ряды, и при их обработке следует пользоваться методами, предназначенными для таких рядов.

Четвертый тип задач — задачи, возникающие перед психоло­гом, занимающимся конструированием диагностических методик, проверкой и обработкой результатов их применения. Отчасти об этих задачах уже говорилось в других главах, но не уделялось вни­мания специально статистике. Психологическая диагностика, в осо­бенности тестология, имеет целый ряд канонических правил, при­менение которых должно обеспечивать высокое качество информа­ции, получаемой посредством диагностических методик. Так, мето­дика должна быть надежной, гомогенной, валидной. По упрочив­шимся в тестологии правилам, все эти свойства проверяются стати­стическими методами.

Здесь уместно высказать некоторые соображения о возможностях статистики в проведении психологического исследования.Статистика как таковая не создает новой научной информации. Эта информация либо содержится, либо не содержится (к сожале­нию, и так бывает) в полученных исследователем материалах. На-: значение статистики состоит в том, чтобы извлечь из этих материа­лов больше полезной информации. Вместе с тем статистика показы­вает, что эта информация не случайна и что добытые данные имеют определенную и значимую вероятность.

Статистические методы раскрывают связи между изучаемыми явле­ниями. Однако необходимо твердо знать, что как бы ни была высока вероятность таких связей, они не дают права исследователю признать их причинно-следственными отношениями. Статистика, как о ней пи­шут известные английские ученые Д.Э. Юл и М.Дж. Кендэл (Теория статистики. М., 1960. С. 18—19.), «вынуждена принимать к анали­зу данные, подверженные влиянию множества причин». Статистика, например, утверждает, что существует значимая связь между дви­гательной скоростью и игрой в теннис. Но отсюда еще не вытекает, будто двигательная скорость и есть причина успешной игры. Нель­зя, по крайней мере в некоторых случаях, исключить и того, что сама двигательная скорость явилась следствием успешной игры.

Чтобы подтвердить или отвергнуть существование причинно-следственных отношений, исследователю зачастую приходится про­думывать целые серии экспериментов. Если они будут правильно построены и проведены, то статистика поможет извлечь из резуль­татов этих экспериментов информацию, которая необходима иссле­дователю, чтобы либо обосновать и подтвердить свою гипотезу, ли­бо признать ее недоказанной.

Вот что нужно знать при использовании статистики.

Итак, были перечислены типы задач, с которыми чаще всего встречаются психологи. Теперь перейдем к изложе­нию конкретных статистических методов, которые способ­ствуют успешному решению перечисленных задач.

Первый тип задач. Статистические методы, примеры их при­менения для принятия решения.

Допустим, школьному психологу нужно представить краткую ин­формацию о развитии психомоторных функций учащихся 6-х классов, в которых обучается 50 учеников. В процессе выполнения своей про­граммы психолог провел диагностическое изучение двигательной ско­рости, применив методику, которая была описана выше (С. 240).

Для реализации своей программы психологу надлежало получить количественные характеристики, свидетельствующие о состоянии изучаемой функции — ее центральной тенденции, величины, пока­зывающей размах колебаний, в пределах которого находятся все данные отдельных учеников, и то, как распределяются эти данные.

Какими методами вести обработку — параметрическими или непара­метрическими? Визуальное ознакомление с полученными данными по­казывает, что возможно применение параметрического метода, т.е. бу­дут вычислены среднее арифметическое, выражающее центральную тенденцию, и среднее квадратическое отклонение, показывающее раз­мах и особенности варьирования экспериментальных результатов.

Нельзя ограничиться вычислением только среднего арифметиче­ского, так как оно не дает полных сведений об изучаемой выборке. Вот пример. В одном купе вагона поместилась бабушка 60 лет с че­тырьмя внуками: 4 лет, двое по 5 и 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5 = 16.

В другом, купе расположилась компания молодежи: двое 15-летних, 16-летний и двое 17-летних. Средний возраст пассажиров этого купе также равен 16. Таким образом, по средним арифмети­ческим пассажиры этих купе как бы и не различаются. Но если об­ратиться к особенностям варьирования, то сразу можно установить, что в одном купе возраст пассажиров варьирует в пределах 56 еди­ниц, а во втором — в пределах 2.

Для вычисления среднего арифметического применяется формула:

а для среднего квадратического отклонения формула:

В этих формулах х означает среднее арифметическое, х — каж­дую величину изучаемого ряда, ∑ — сумму; σ — среднее квадрати­ческое отклонение; п — число членов изучаемого ряда.

Вернемся к опыту с проверкой двигательной скорости учащихся (С. 244).

В опытах участвовали 50 испытуемых. Каждый из них выполнил по 25 проб, по 1 минуте каждая. Вычислена средняя каждого испы­туемого. Полученный ряд упорядочен и все индивидуальные резуль­таты представлены в последовательности от меньшего к большему:

85 — 93 — 93 — 99 — 101 — 105 — 109 — 110 — 111 — 115 — 115 — 116 — 116 — 117 — 117 — 117 — 118 — 119 — 121 — 121 — 122 — 124 — 124 — 124 — 124 — 125 — 125 — 125 — 127 — 127 — 127 — 127 — 127 — 128 — 130 — 131 — 132 — 132 — 133 — 134 — 134 — 135 — 138 — 138 — 140 — 143 — 144 — 146 — 150 — 158

Для дальнейшей обработки удобнее эти первичные данные со­единить в группы, тогда отчетливее выступает присущее данному ряду распределение величин и их численностей. Отчасти упрощается и вычисление среднего арифметического и среднего квадратиче­ского отклонения. Этим искупается несущественное искажение информации, неизбежное при вычислениях на сгруппированных данных.

При выборе группового интервала следует принять во внимание такие соображения. Если ряд не очень велик, например содержит до 100 элементов, то и число групп не должно быть очень велико, например порядка 10—12. Желательно, чтобы при группировании начальная величина — при соблюдении последовательности от меньшей величины к большей — была меньше самой меньшей ве­личины ряда, а самая большая — больше самой большой величины изучаемого ряда. Если ряд, как в данном случае, начинается с 85, группирование нужно начать с меньшей величины, а поскольку ряд за­вершается числом 158, то и группирование должно завершаться большей величиной. В ряду, который нами изучается, с учетом высказанных со­ображений можно выбрать групповой интервал в 9 единиц и произвести разбиение ряда на группы, начав с 83. Тогда последняя группа будет за­вершаться величиной, превышающей значение последней величины ряда (т.е. 158). Число групп будет равно 9 (табл. 1).

Вычисление среднего арифметического и среднего квадратическо­го отклонения.

 

1-й столбец — группы, полученные после разбиения изучаемого ряда.

2-й столбец — средние значения каждой группы; этот столбец показывает, в каком диапазоне варьируют величины изучаемого ря­да, т.е. х.

3-й столбец показывает результаты «ручной» разноски величин ряда или иксов: каждая величина занесена в соответствующую ее значению группу в виде черточки.

4-й столбец — это итог подсчета результатов разноски.

5-й столбец показывает, сколько раз встречалась каждая величи­на ряда — это произведение величин второго столбца на величины 4-го столбца по строчкам. Итоги 4-го и 5-го столбцов дают суммы, необходимые для вычисления среднего арифметического.

6-й столбец показывает разность среднего арифметического и значения х" по каждой группе.

7-й столбец — квадрат этих разностей.

8-й столбец показывает, сколько раз встречался каждый квадрат разности; суммирование величин этого столбца дает итог, необхо­димый для вычисления среднего квадратического отклонения.

В заголовках 5-го и 8-го столбцов указывается, насколько часто встречается та или другая величина. Частота обозначается буквой / (от английского слова frequency).

Включение буквы /, означающей, насколько часто встречалась та или другая величина, ничего не изменяет в формулах среднего арифметического и среднего квадратического отклонения.

Поэтому формулы

вполне тождественны.

Остается показать, как вы­числяются по формулам сред- 16 нее арифметическое и среднее квадратическое отклонение. 12 Обратимся к величинам, полу­ченным в таблице: 8

х = 6150 : 50 = 123.

При составлении таблицы это 4 число было заранее вычислено, без него нельзя было бы полу­чить числовые значения 6, 7, 8-го столбцов таблицы.

 

 

 

При обработке изучаемого ряда оказалось возможным примене­ние параметрического метода, так как визуально в этом ряду рас­пределение численностей приближается к нормальному. Это под­тверждается и графиком (рис. 2, с. 251).

Нормальное распределение обладает некоторыми весьма полезными для исследователя свойствами. Так, в границах F ±ст находится при­мерно 68% всего ряда или всей выборки, в границах х ±2а — пример­но 95%, а в границах F ±3а — 97,7% выборки. В практике иссле­дований часто берут границы — х~ ±2/За. В этих границах при нор­мальном распределении будут находиться 50% выборки; распреде­ление это симметрично, поэтому 25% окажутся ниже, а 25% выше границ Y ±2/Зст. Все эти расчеты не требуют никакой дополни­тельной проверки при условии, что изучаемый ряд имеет нор­мальное распределение, а число элементов в нем велико, поряд­ка нескольких сотен или тысяч. Для рядов, которые распределе­ны нормально или имеют распределение, мало отличающееся от нормального, вычисляется коэффициент вариации по такой фор­муле:

В примере, который был рассмотрен выше,

V= (10(М4,4)/123 = 11,7.

Выполнив все эти вычисления, психолог может представить инфор­мацию об изучении двигательной скорости с помощью примененной методики в 6-х классах. Согласно результатам изучения в 6-х классах получены: среднее арифметическое — 123; среднее квадратическое от­клонение — 14,4; коэффициент вариативности — 11,7.

Непараметрические методы. Ранжирование, медиана, квартиль. Далеко не все материалы, получаемые в психологиче­ских исследованиях, подлежат обработке параметрическими мето­дами. Если после ознакомления с изучаемым рядом исследователь убеждается в том, что этот ряд не имеет свойств нормального рас­пределения, ему остается перейти на методы непараметрической статистики. С их помощью могут быть получены и центральная тенденция изучаемого ряда — медиана — и величина, позволяющая судить о диапазоне варьирования и о строении изучаемого ряда — квартильное отклонение.

Информация о работе Простейшие методы статистической обработки материалов психологических исследований