Простейшие методы статистической обработки материалов психологических исследований

Автор: Пользователь скрыл имя, 07 Мая 2012 в 15:50, доклад

Описание работы

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация об индивидуально-психологических особенностях испытуемых. Вообще психологические исследования обычно строятся с опорой на количественные данные.

Работа содержит 1 файл

психолог_исследования.doc

— 909.50 Кб (Скачать)

Число степеней свободы fd = п - 2 = 15-2= 13. По таблице уровней значимости находим, что при 13 степенях свободы /0,999 ^ = 0,760. Сравниваем это значение с полученным коэффициентом: ^ 0,76 < 0,96.

Полученный коэффициент корреляции показывает, что между ре->, зультатами в тестах «Аналогии» и «Классификации» имеется связь.. Высокий уровень значимости свидетельствует о том, что эта связь с-; высокой вероятностью будет воспроизводиться в таких же экспериментах.

Вычисление коэффициента корреляции по Спирмену! (коэффициент ранговой корреляции).

Исследовательское задание указано на с. 266. Формула ранговой' корреляции такова:

где d — разность рангов ряда х и ряда у т.е. (Rx - Ry).

Таблица 6

Испыту­емые

X

Rx

У

Ry

dRxRy

г,* K dRxR

У

А

1

1

3

1

0

0

Б

2

2

4

2

0

0

В

3

3,5

5

3

0,5

0,25

Г

3

3,5

6

4,5

1

1

д

4

6

6

4,5

1,5

2,25

Е

4

6

7

6,5

0,5

0,25

Ж

4

6

7

6,5

0,5

0,25

3

5

8,5

8

9,5

1

1

И

5

8,5

8

9,5

1

1

К

6

10,5

8

9,5

1

1

Л

6

10,5

8

9,5

1

1

м

7

12

9

12,5

0,5

0,25

н

8

13

9

12,5

0,5

0,25

о

9

14

10

14

0

0

п

10

15

11

15

0

0

n = 15

n2 = 225

 

Ed RxRy

= 8,5


fd = n - 2 = 15 - 2 = 13.

Производится раздельное ранжирование ряда х и ряда у. Вычис­ляется разность рангов d попарно. Знак разности не существенен, так как по формуле нужно возвести d в квадрат. Далее действия определяются формулой:

По таблице уровней значимости р > ро,99 (0,98 > 0,70).

Коэффициенты, вычисленные двумя разными способами, как и нужно было ожидать, чрезвычайно близки друг к другу; отличаются они на 0,02, что никакого значения практически не имеет.

Нельзя трактовать коэффициент корреляции как величину, озна­чающую процент взаимозависимых связей вариант двух коррели­руемых рядов, т.е. например, коэффициент 0,50 трактовать как 50% таких связей этих рядов. Это далеко не так. Об этом проценте во­обще по коэффициенту корреляции судить нельзя. Возведенный в квадрат коэффициент корреляции называется коэффициентом детерми­нации (г2 или р2). Он показывает, сколько процентов вариант обоих рядов оказались взаимозависимыми. При коэффициенте 0,50 процент таких взаимозависимых вариант составит О,5О2, т.е. 0,25 (Heinz A., Ebner С. Grundlagen der Statistik fur Psychologen, Padagogen und Soziologen. Berlin, 1967. S. 112). Для коэффициента 0,98 коэффици­ент детерминации составит 0,982 = 0,9604. Следовательно, взаимо­зависимы примерно 96% вариант обоих рядов.

Корреляция как метод статистического анализа в психологиче­ских исследованиях применяется очень часто. Всем, кто работает с применением корреляционного анализа, т.е. выясняет посредством этого метода тесноту связи двух рядов, следует напомнить, что ко­эффициент, как бы высок он ни был, нельзя интерпретировать как показатель наличия причинной связи между коррелируемыми ряда­ми. Если коэффициент и может быть как-то использован в обсуж­дении вопроса о возможных причинных связях, то только в том случае, когда содержательная логика исследования и выдвигаемые при этом теоретические соображения позволяют опереться как на один из аргументов и на значение коэффициента корреляции.

В изложении метода корреляции речь шла исключительно о ли­нейных корреляциях, которые изображены на схемах №1,2, 4. Но там же приведена схема криволинейной корреляции (№ 5). Вообще говоря, вероятно, и в психике человека протекают процессы, взаи­мосвязь которых не имеет линейного вида. Вычисление нелинейных корреляций и, главное их истолкование не относятся к простейшим статистическим методам, о которых говорится в этой главе. Но об их существовании следует знать.

Наконец, полезно напомнить, что корреляции по Пирсону (с оп­ределенными ограничениями и в определенных сочетаниях) создают ту базу, на которой открываются возможности перехода к так назы­ваемому факторному анализу. (Наиболее ясное изложение сути факторного анализа см.: Теплое Б.М. Типологические особенности в н.д. человека. М., 1967. Т. 5. С. 239).

Метод определения меры различия между наблюдаемыми и предполагаемыми (теоретическими) численностями — хи-квадрат.

Ранее были рассмотрены различные отношения между выборка­ми: количественное преобладание какого-то признака, представлен­ного в одной из выборок, теснота связи между выборками. Но есть еще одно важное отношение между ними: количественная разница распределений, благодаря которой при сопоставлении выборок от­крывается возможность прийти к содержательным выводам. Это от­ношение обнаруживается при сопоставлении распределений численностей. Допустим, что сравниваются две выборки, выпускников двух школ. Часть выпускников каждой школы сдавали экзамены в вузы. Из первой школы сдавали экзамены 100 человек, из них 82 успешно, не сдали 18. Таково распределение численности в первой выборке. Из второй школы сдавали экзамены в вузы 87 человек, выдержали 44 человека, не сдали — 43. Таково распределение численностей во второй выборке. Достаточно ли этих данных, чтобы утверждать, что подготовленность к вузовским экзаменам выпуск­ников этих школ неодинакова? На первый взгляд, разница налицо: лучше подготовлены выпускники первой школы. Однако при таком раскладе численностей возможно влияние случайности. Поэтому встает вопрос, можно ли, считаясь с представленными распределе­ниями, прийти к статистически обоснованному выводу о мере под­готовленности к экзаменам в вузы той и другой выборки.

Метод, с помощью которого подвергаются статистическому ана­лизу описанные распределения численностей, получил название хи-квадрат, его обозначают греческой буквой х2 с показателем степе­ни. Он был разработан математиком Пирсоном. Метод х2 весьма универсален, применим во многих исследованиях, пригоден для ста­тистического анализа распределения численностей разнообразных количественных материалов, относящихся ко всем статистическим шкалам, в том числе и к шкале наименований.

Техника вычисления хи-квадрата довольно проста. Рассмотрим пример со сдачей экзаменов в вузы выпускниками первой и второй школ. В условии сказано, что всего намерены были сдавать экзаме­ны 187 человек: 100 учащихся (53,5%) из первой школы и 87 (46,5%) из второй. Предположим, что выпускники обеих школ под­готовлены одинаково, тогда и доли сдавших и не сдавших будут та­кие же, как доли их представленности в общем числе сдающих. Всего сдало экзамены 126 выпускников (82 + 44). Согласно выска­занному предположению, 53,5% от этого числа должны бы были прийтись на 1-ю школу — это составит 66,9 от 126 — и 46,5% на 2-ю школу, что составит 58,9 от 126. Такое же рассуждение повторяем и относительно несдавших. Их всего 61 человек (18 + 43). На 1-ю школу, как нам известно, должно, по предположению, прийтись 53,5% от этого числа, т.е. 33,0 от 61, а на долю 2-й школы — 46,5%, т.е. 28,1 от 61. Нуль-гипотеза, имеющая в данном раскладе тот смысл, что между выпускниками нет различия, при таком соот­ношении сдавших и не сдавших подтвердилась бы. Однако в услови­ях этого исследования показано другое распределение. Количество выпускников 1-й школы, сдавших экзамены, составляет 82, а не 66,9, как можно было бы предположить, исходя из нуль-гипотезы. Соот­ветственно количество выпускников 2-й школы, сдавших экзамены, составляет в действительности всего 44, а не 58,9. Точно также, сравнивая количество несдавших (по условию с предполагаемым распределением) найдем по 1-й школе 18, а не 33, а по 2-й школе — 43, а не 28,1.

Расхождения между действительными распределениями и рас­пределениями, которые могли бы иметь место, если исходить из нуль-гипотез, налицо. Они-то и учитываются при вычислении x2. Все сказанное удобно представить в виде таблицы-графика распре­деления численностей (табл. 7). Количества, которые были бы по­лучены при принятии нуль-гипотезы, заключены в скобки. В правом углу буквенное обозначение клетки.

Таблица 7

Школа

Число сдавших

Число несдавших

Всего

Долевые отноше­ния, %

Первая

82 А (66,9)

18 В (33,0)

100 (100)

53,5

Вторая

44 С (58,9)

43 Д (28,1)

87 (87)

46,5

Всего

126

61

187

100


Получены разности по клеткам (знак разности несущественен). Клетки:

Формула хи-квадрат:

где /о— наблюдаемые численности; fe — предполагаемые (теоре­тические) численности.

Для получения числа степеней свободы нужно воспользоваться формулой (только для хи-квадрат): fd = (k - 1)(с - 1) = (2 - 1)х х (2 — 1) = 1 степень свободы, где k — число столбцов, с — число строк в таблице с анализируемым материалом.

Обратимся к таблице уровней значимости для одной степени свободы для хи-квадрат: ;£2о,99 = 6,6. Следовательно, полученная величина вполне достаточна для отклонения H0. Есть все основания для содержательного вывода о различной степени подготовленности выпускников обеих школ к экзаменам в вузы.

Все вычисления, приводимые в этой главе, ведутся с точно­стью до первого знака, т.е. вычисляются целые и десятые. Этим объясняется та, в общем-то, несущественная разница при вычис­лениях одной и той же величины разными способами. Никакого практического значения встречающиеся расхождения в величи­нах не имеют.

Полезно знать, что коэффициент хи-квадрат и коэффициент че­тырехпольной корреляции взаимосвязаны и, поскольку известна численность и распределение сопоставляемых выборок, указанные коэффициенты могут быть определены один через другой.

Как показывает само название этого метода, числовой материал, подлежащий статистическому анализу, может быть распределен в таблице-графике, имеющей четыре поля. Такое расположение мате­риала облегчает все последующие действия с ним. Чтобы рассмот­реть технику вычисления коэффициента четырехпольной корреля­ции — он обозначается символом <р (фи), — можно воспользовать­ся тем примером, где речь шла о вычислении коэффициента х2- Вы­пускники двух школ сравнивались между собой по подготовленно­сти к вузовским экзаменам.

 

Школы

Сдали

Не сдали

Всего

Первая

82 а

18 b

100 а + b

Вторая

44 с

43 d

87 c + d

Итого:

126 а + с

61 b + d

187

Информация о работе Простейшие методы статистической обработки материалов психологических исследований