Простейшие методы статистической обработки материалов психологических исследований

Автор: Пользователь скрыл имя, 07 Мая 2012 в 15:50, доклад

Описание работы

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация об индивидуально-психологических особенностях испытуемых. Вообще психологические исследования обычно строятся с опорой на количественные данные.

Работа содержит 1 файл

психолог_исследования.doc

— 909.50 Кб (Скачать)

Заменив буквенные обозначения числами, получим:

Для получения коэффициента х нужно воспользоваться форму­лой х2 = <Р'П. В данном примере х2 = 0,342-187 = 0,1156-187 = = 21,7. Этот же коэффициент х2 вычислялся другим приемом. По­лучено значение 21,9. Расхождение вызвано разницей в технике вычислений.

Коэффициент четырехпольной корреляции <р может принимать значения от 0 до 1, причем знак получаемого (р не принимается во внимание.

Психологу, намеренному воспользоваться для статистического анализа своих материалов методом хи-квадрат, нужно знать о неко­торых обязательных требованиях этого метода; о них не упомина­лось в приведенных примерах.

При вычислении коэффициента х2 необходимо брать для анализа только абсолютные численности вы­борок, но не относительные, в частности, не проценты. Необходи­мость учитывать это свойство объясняется тем, что значение коэф­фициента х2 зависит от абсолютных величин рассматриваемых рас­пределений. Так, сравнение выборок с численностями 60 и 40 даст совершенно не тот результат, что сравнение выборок с численно­стями 6 и 4, хотя процентное отношение распределений в обоих случаях одинаково (60 и 40%).

Далее, для вычисления коэффициента х2 нужно, чтобы в каждой клетке таблицы-графика было не менее пяти наблюдений. Наконец, нужно со вниманием относиться к определению числа степеней свободы; неверное определение этого числа повлечет за собой не­верное определение уровня значимости коэффициента по таблице.

Этим заканчивается рассмотрение статистических методов, отно­сящихся ко второму типу задач.

В этих задачах независимо от того, будут ли они практического или теоретического содержания, психолог сопоставляет, сравнивает между собой несколько выборок. При этом не следует забывать, что цель исследования не всегда состоит в том, чтобы при сопоставле­нии отвергнуть нуль-гипотезу. Иногда конечная или промежуточная цель исследования состоит в том, чтобы, допустим, сравнивая вы­борки, подтвердить нуль-гипотезу. Самый простой пример: исследо­ватель желает составить большую выборку, для чего необходимо объединить в ней учащихся нескольких школ. Естественно, решаю­щее значение имеет доказательство того, что группы учащихся из разных школ относятся к одной совокупности, нужно, чтобы при­мененные критерии подтвердили это, а значит, статистика должна подтвердить при сравнении групп нуль-гипотезу. Подтвердить или отвергнуть нуль-гипотезу при сопоставлении выборок — в этом и состоит назначение статистических критериев; наиболее простые из них были изложены в предшествующем тексте. Конечно, информа­ция, которую выявят статистические методы, может быть противоречи­ва утверждениям, которые намерен защищать исследователь. В таком случае ему придется внести поправки в свои утверждения или отка­заться от них.

Переходим к задачам третьего типа — задачам, рассмат­ривающим динамические, временные ряды.

Предположим, что психологу дано задание собрать информацию о состоянии умственной работоспособности школьников 8-х классов, начиная со второй недели учебного года и до девятой недели вклю­чительно. Одной из методик, с помощью которых можно фиксиро­вать состояние умственной работоспособности, считается тест Кре-пелина. Он состоит из большого количества примеров, в каждом из них нужно складывать два двузначных числа; учитывается общее число правильно решенных примеров. Каждые 3 минуты испытуе­мые по сигналу экспериментатора отмечают черточкой сделанное. Общая длительность эксперимента в зависимости от возраста со­ставит 9, 12 или 15 минут. Этой методикой и воспользовался пси­холог. Он начал с того, что сформировал из учащихся, средние ус­пехи которых оценивались за предыдущее полугодие баллами 4 и 5, выборку из 10 человек. Все они изъявили желание участвовать в эксперименте. С этими учащимися психолог в течение первой недели учебного года провел по 12 тренировочных занятий; это было необходимо, иначе рост продуктивности вследствие упраж-няемости замаскировал бы изменения в динамике работоспо­собности. Затем начался эксперимент: по субботам после уроков учащиеся этой выборки в течение 12 минут работали с тестом Крепелина. Эксперимент, как было сказано, продолжался 8 не­дель. Были получены следующие данные, средние по всей выбор­ке (рис. 4).

Визуальная оценка полученного динамического ряда свидетельст­вует о снижении умственной работоспособности, в чем, конечно, нет ничего удивительного. Однако снижение идет не вполне равно­мерно. Это ясно видно из графика.

 

Недели экспери­мента

I

II

III

IV

V

VI

VII

VIII

Средняя продук­тивность по тесту Крепелина

92

94

90

92

81

74

78

70


Основная тенденция измене­ния умственной работоспособ­ности вполне ясна. Наблюдае­мые, в общем, незначительные отклонения от этой тенденции могут быть на графике устра­нены методом сглаживания. В этом случае применим метод скользящей средней. Для сгла­живания суммируются три по­казателя у — в данном приме­ре это показатели продуктив­ности по тесту, — далее, опус­кая по одному показателю, суммируются одна за другой триады. Средняя каждой триа­ды принимается за показатель сглаженной ломанной, если ори­ентироваться по графику. Смысл проводимого действия состоит в том, что основная тенденция выступает более отчетливо.

В только что рассмотренном примере сглаживание имеет такой вид: 92 92 88 82 77 74 — средние по триадам 92 94 90 92 81 74 78 70 Результаты сглаживания приобретают большую наглядность при нанесении их на график. Выступает основная тенденция динамики умственной работоспособности. Судя по показателям, полученным после сглаживания, в течение первых трех экспериментальных не­дель значительного снижения работоспособности не наблюдается, а далее идет непрерывное и резкое ее снижение. Сглаживание, как видно на графике, устранило колебания в работоспособности, отме­ченные на первичном графике после V недели. При сглаживании по триадам общее число точек уменьшается на 2.

Какое значение имеет выделение посредством сглаживания ос­новной тенденции? Если условия, благодаря которым возникла ос­новная тенденция, сохранятся, то и эта тенденция с высокой веро­ятностью сохранится и, таким образом, по основной тенденции мо­жет быть построен прогноз, как будут развиваться изучаемые явле­ния. Но такой прогноз возможен только при стабильности опреде­ленных условий. Для его построения нужен не только формальный, но и содержательный анализ; он же позволяет раскрыть значение факторов, вызвавших отклонения в ту или другую сторону от ос­новной тенденции.

Техника метода скользящей средней дает возможность выбирать различные способы объединения показателей для сглаживания. Та­ковыми могут быть не только триады, но при достаточно большом числе показателей (порядка 30—40 и более) для выведения сколь­зящей средней могут быть выбраны пентады (объединения пяти по­казателей) и даже септиды (семь показателей).

Нужно иметь в виду, что наглядный и простой метод скользящей средней малопригоден для сглаживания динамики процессов, развитие которых во времени не имеет линейной формы (см.: рис. 3, схема 5, с. 265). Сглаживание методом скользящей средней в таких случаях мо­жет привести к искажению действительной тенденции развивающегося процесса. Исследователю следует внимательно всмотреться в материал, подлежащий сглаживанию, чтобы решить, имеет ли он право восполь­зоваться этим методом. Если криволинейная зависимость отражена в достаточно больших отрезках кривой, то каждый из этих отрезков в отдельности может быть подвергнут сглаживанию. Таково ограничение в использовании метода скользящей средней.

Анализируя выраженную на графике основную тенденцию в ее приближении к прямой, можно заметить, что метод не дает меры наклона, угла, который образуется между полученной после сгла­живания приближающейся к прямой ломаной и осью абсцисс. Ме­жду тем, узнав величину этого угла, исследователь получит инфор­мацию о том, с какой скоростью изменяются изучаемые явления во времени: чем круче наклон и соответственно чем меньше внешний угол сглаженной кривой с осью абсцисс, тем больший путь проходит за единицу времени изменяющийся процесс. Это хорошо видно на рис. 5.

Точные сведения о мере наклона отрезка прямой, полученного после сглаживания, да­ет метод наименьших квадратов.

Для получения пара­метров отрезка прямой нужно обратиться к от­ношению единиц време­ни (х) и показателей раз­вивающего процесса (у).

Для нахождения па­раметров отрезка прямой, который после сглаживания представит основную тенденцию изменяющегося ряда, проделываются вычисле­ния по определенным формулам.

Формула прямой: у = а + Ьх, где у означает показатели ряда, х — единицы времени, по которым прослеживаются изменения изучае­мого ряда. Надлежит узнать величины а и Ь. Величина а необходи­ма для установления точки, с которой берет свое начало отрезок прямой, b — необходимо для установления степени наклона отрезка прямой по отношению к оси абсцисс (оси иксов).

Для вычисления вышеуказанных параметров а и b имеется сис­тема двух уравнений с двумя неизвестными:

х и у в этой формуле рассчитываются из фактических данных изу­чаемого ряда.

Порядок вычислений. Шестиклассники Саня и Толя в течение пяти дней упражнялись в бросках мяча в корзину. Показатели Сани приведены в таблице (л: — единица времени, у число попаданий мячом в корзину. В таблице приведены вычисления и других, тре­буемых формулой, величин; п = 5).

X

У

х2

ху

1

3

1

3

2

4

4

8

3

6

9

18

4

5

16

20

5

8

25

40


 

Нахождение неизвестных а и b производится обычным способом исключения одного неизвестного. Члены первого уравнения для этого умножаются на 3

15а + 456 = 78.

Из второго уравнения вычитается первое, вычисляем b:

106 = 11; Ь= 1,1.

Подставив числовое значение b в первое уравнение, можно полу­чить числовое значение а:

5а + 16,5 = 26; 5а = 9,5; а = 1,9.

Поскольку известны оба параметра отрезка прямой, можно опре­делить все значения параметров по пяти точкам, по формуле у = = 1.9 + 1.1*.

Как было сказано ранее, сверстник Сани Толя упражнялся в том же умении. Так же, как и у Сани, количество дней упражнения бы­ло равно 5. Ниже приводятся результаты Толи и показаны все дру­гие величины, которые необходимы для вычисления величин, тре­буемых формулой.

 

X

У

х2

ху

1

3

1

3

2

6

4

12

3

5

9

15

4

8

16

32

5

10

25

50

Информация о работе Простейшие методы статистической обработки материалов психологических исследований