Психология дыхания, музыки, движения

Автор: Пользователь скрыл имя, 12 Февраля 2013 в 20:54, монография

Описание работы

Монография доктора психологических наук, профессора Владимира Васильевича Козлова является уникальной работой в теории и практическом приложении психологии. В книге изложена новейшая психотехнология личностного роста и самоисследования, сочетающая изыски музыкотерапии, танцевально-двигательной и телесной психологии, а также методов использования измененных состояний сознания, вызываемых дыхательными психотехниками.
Представляет интерес для психологов, педагогов, психотерапевтов, психиатров, а также других специалистов, интересующихся проблемами личностного роста.

Работа содержит 1 файл

Козлов В.В. - Психология дыхания, музыки, движения (МАПН, 2009, ).doc

— 810.00 Кб (Скачать)

Это составляло до 70%-80% максимальной вентиляции и примерно соответствовало величине минутной вентиляции при выполнении максимального велоэргометрического теста у данных обследуемых. Рост минутной вентиляции происходил преимущественно за счет увеличения частоты дыхания, максимальные значения которой составляли 91,8 ±5,9 минֿ¹ и в меньшей степени за счет увеличения дыхательного объема (с 0,6±0,05 л до 1,78±0,18 л).

Показатель пикового потока выдоха возрастал еще более  значительно и составлял в  среднем по группе 294±22 л/мин (от 205 до 425 л/мин). Происходило изменение  структуры дыхательного цикла со снижением вариативности и уменьшением времени выдоха.

Исследование центральной  и периферической гемодинамики во время  процессов связного дыхания показало устойчивую тенденцию к снижению ударного объема в первые минуты связном дыхании. Причиной отмеченного явления могло служить транзиторное снижение объема циркулирующей крови за счет быстрой обратимой потери безбелковых компонентов плазмы через сосудистые стенки. Другой причиной является уменьшение венозного возврата крови из-за изменения условий циркуляции в легочных сосудах. Однако эти изменения компенсировались увеличением частоты сердечных сокращений, в результате чего не происходило выраженного падения минутного объема кровообращения. Другим механизмом компенсации этой неблагоприятной гемодинамической ситуации являлось некоторое повышение периферического сосудистого сопротивления. Исследование периферического кровообращения в плечевых сосудах позволило выявить признаки увеличения линейной скорости кровотока по артериям и снижение их просвета. Проявлением эффективности этих механизмов являлась стабильность системного артериального давления, значимых изменений которого, как правило, не происходило.

Для окончания процесса более типичным являлась нормализация ударного и сердечного выброса при тенденции к снижению сосудистого тонуса и среднего артериального давления.

Интересным в теоретическом  плане явилось зарегистрированное нами у ряда пациентов повышение  венозного давления в периферических сосудах, значения которого в некоторых  случаях приближались к величинам диастолического артериального давления. Это может свидетельствовать о существенном затруднении венозного возврата, по-видимому, в основном за счет повышения сосудистого сопротивления в сосудах малого круга кровообращения.

Если проанализировать с точки зрения физиологии эффекты всех рассмотренных форматов дыхания, то можно выделить следующие фазы:

1. Общая для всех  техник начальная фаза, длительностью  5-10 мин. Она характеризуется нарастанием  дисбаланса между потреблением  кислорода и выделением углекислого газа, достигающего 5-6-кратного уровня. При этом общие потери (дисбаланс) углекислого газа составляют порядка 1 литра. В конце этой фазы на пике гипокапнии возникает измененное состояние сознания, что подтверждается субъективными отчетами клиентов и результатами исследования электрической активности головного мозга. Количественные характеристики этого периода, то есть его длительность и «крутизна» кривой нарастания степени гипокапнии зависит от величины связном дыхании (то есть от формата дыхания).

2. Фаза включения механизмов, препятствующих прогрессированию  гипокапнии. С 10-15 минуты интенсивного  дыхания потери углекислого газа  начинают уменьшаться, а степень  гипокапнии стабилизируется. Механизм  этого явления до конца не  ясен. Его парадоксальность состоит в следующем:

  • через легкие прокачивается огромное количество воздуха (50-70% от максимально возможного), при этом, вопреки существующим взглядам, вентилируется не только мертвое пространство, но практически в той же степени и альвеолы,
  • через сосуды легких прокачивается прежнее или даже несколько большее количество крови (минутный объем кровообращения не изменяется или несколько повышается), но при этом газообмен между кровью и альвеолярным воздухом существенно затрудняется, уменьшаясь, в ряде случаев в 5-10 раз. Это напоминает ситуацию «разобщения» внешнего дыхания и кровообращения.

Функция внешнего дыхания  удивительно точно скоординирована  с деятельностью системы кровообращения и энергетикой организма. Существует очень наглядная модель, изображающая эту взаимосвязь в виде 3-х зубчатых колес – своеобразной коробки передач (рис. 11). Вращение каждого «колеса» теснейшим образом связано с количеством оборотов других. Зная основные количественные взаимоотношения этих систем (минутный объем дыхания и потребление кислорода, минутный объем кровообращения и артериовенозная разница по кислороду) несложно рассчитать соответствующие «передаточные» коэффициенты.

Система газотранспорта настроена, прежде всего, на коррекцию  изменений, возникающих в биоэнергетике, например, при начале какой-то физической активности. Возникающий при этом дефицит энергетических субстратов, избыток продуктов окисления, активизируют деятельность системы кровообращения. Для их удаления и поступления дополнительного количества кислорода и затем запускается интенсификация деятельности аппарата внешнего дыхания. Происходит восстановление нарушенного равновесия и система продолжает функционировать, управляясь обратными взаимосвязями на этом новом уровне активности. Это детально исследовано в спортивной физиологии, и, так как указанный механизм включается у каждого человека тысячи раз ежедневно, на это направлена работа адаптационных механизмов.

Гораздо менее изучена  ситуация, когда запуск этого механизма  происходит с другой стороны – когда человек, волевым контролем начинает изменять ритм и/или глубину дыхания. Это не обусловлено метаболическими потребностями и сразу же начинает приводить к нарушению гомеостаза. Первое, что при этом возникает, – выраженный дискомфорт. Если у человека нет сильного мотива продолжать выполнять данный прием (например, если ребенок экспериментирует со своим дыханием), он обнаруживает определенный барьер и останавливается. Если есть определенный волевой посыл (намерение), человек проходит этот барьер дискомфорта и, продолжая дышать в том же формате, в случае более частого и глубокого дыхания входит в состояние связном дыхании, когда легочная вентиляция превышает метаболические потребности организма. Условно можно считать, что связное дыхание наступает, если минутный объем дыхания у человека, находящегося в покое, превышает 22,5 л., при том, что у взрослого человека в состоянии покоя легочная вентиляция составляет 5-6 л/мин, а при физической нагрузке минутный объем дыхания возрастает до 80 л и более.

Если, как уже говорилось, в случае «раскручивания» этой системы от 3-го колеса, то есть энергетики, у организма имеются мощнейшие компенсаторные механизмы, тренируемые тысячекратно и ежедневно.

Таким образом, кровообращение и внешнее дыхание как бы выходят  из зацепления и прокручиваются «вхолостую». Результатом этого является снижение газообмена и стабилизация концентрации углекислого газа в крови на уровне, достигнутом в первой фазе.

Время включения и  максимальной эффективности этого  механизма составляет 10-15 минут. Таким образом, это то время, когда можно наиболее легко и комфортно войти в измененное состояние сознания. Когда это время упущено, после включения этого механизма для достижения того же эффекта, потребуется значительно большие (в 5-10 раз) усилия, то есть это и будет та «breath work» («дыхательная работа») по С.Грофу. После включения указанного механизма, связное дыхание и связное дыхание уже лишь только поддерживают достигнутый к тому времени уровень гипокапнии. Кроме того, динамика времени включения и эффективности механизма компенсации гипокапнии, имеющая место при регулярных занятиях дыхательными техниками, может явиться одним из объяснений изменения остроты и характера переживаний при прохождении повторных процессов.

Имеется определенная специфика различных форматов дыхания в этой фазе физиологических изменений (рис. 3):

Рис. 3. Динамика дисбаланса CO при различных дыхательных техниках и физнагрузке (ВЭ).

 

  • в случае техник с расслабленным выдохом (свободное дыхание и вайвейшн, ДМД) кривая уменьшения потерь углекислоты быстро выходит на исходный уровень, а график динамики в 1 и 2 фазах имеет почти симметричный вид (зависимость типа параболической). Общие потери углекислого газа (дефицит) за 1 и 2 фазу составляют около 2 литров. Дальнейшее поддержание связного дыхания (с 15-20 минуты воздействия) лишь служит сохранению этого дефицита на достигнутом уровне (и вызванного им измененного состояния сознания) на протяжении всего процесса. Таким образом, общий дисбаланс между потреблением кислорода и выделением углекислого газа составляет за весь процесс также порядка 2-х литров;
  • в случае холотропного дыхания (ХД) кривая потери углекислого газа в первой фазе нарастает более круто, а во второй снижается медленнее, то есть является более пологой. Общие потери углекислоты крови при этом несколько больше – порядка 2,5 литров. Особенностью холотропного дыхания является продолжение потерь углекислого газа и по ходу процесса, то есть величина общего дисбаланса за весь процесс продолжительностью 1-1,5 часа составляет около 3 литров.

Строго говоря, абсолютная величина этого дисбаланса не является чем-то необычным для организма. Примерно на такие же величины смещается  равновесие между потреблением кислорода  и выделением углекислого газа при  сильных физических нагрузках. Уникальность изменений этого показателя при дыхательных психотехниках состоит лишь в его знаке.

Как известно, более привычными для организма являются ситуации недостатка кислорода и избытка  углекислого газа. На компенсацию  этого сдвига преимущественно направлены буферные системы организма, эффективность которых в этом случае многократно превышает возможности парирования гипокапнии.

Известно, что общие  запасы углекислого газа в организме  составляют около 120 литров и потеря 2-3 литров составляет лишь 2-2,5%. Это на первый взгляд вроде бы немного, но для такого жестко гомеостазируемого показателя, как парциальное давление углекислого газа в крови это практически весь наличный резерв систем «быстрого реагирования» буферных систем крови и тканей. Об их близости к полному исчерпанию свидетельствует значительное снижение напряжения углекислого газа в крови, достигающее 15-20 мм.рт.ст.

Одной из причин поддержания физиологического гомеостазиса может являться метаболическая компенсация возникающих сдвигов кислотно-щелочного равновесия.

Это блокирование аэробного  обмена и переход на анаэробный с  образованием промежуточных продуктов  метаболизма – пирувата и молочной кислоты. Кроме компенсации сдвига кислотно-щелочного равновесия это  имеет и ряд других положительных  следствий. Известно, что молочная кислота является превосходным субстратом окисления для сердечной мышцы, легких, головного мозга. Неполный метаболизм глюкозы при связном дыхании позволяет объяснить еще ряд физиологических парадоксов свободного дыхания:

  • крайняя редкость случаев приступов стенокардии у больных ишемической болезнью сердца во время процессов, несмотря на интенсивные переживания и изменения во внутренней среде организма, что в обычных условиях, даже при значительно меньшей выраженности, провоцирует приступ. Дополнительными факторами, улучшающими состояние внутрисердечной гемодинамики является повышение оксигенации крови и изменение фазовой структуры сердечного цикла с увеличением суммарного времени диастолы. Кроме этого значимого повышения потребления миокардом кислорода, по-видимому, не происходит, о чем свидетельствует относительно малая динамика величины индекса Робинсона (двойного произведения). Все эти факторы многократно компенсируют неблагоприятные сдвиги, среди которых, в первую очередь, следует отметить затруднение диссоциации оксигемоглобина вследствие сдвига кислотно-щелочного равновесия крови в сторону защелачивания. Это подтверждается результатами кардиомониторирования, проводимого в наших исследованиях во время процессов;
  • отсутствие выраженных изменений в функциях центральной нервной системы, которые должны быть при таких степенях гипокапнии из-за перераспределения мозгового кровотока cо снижением кровонаполнения сосудов мягкой мозговой оболочки, коры и некоторых подкорковых центров. Это согласуется с характером изменения ЭЭГ при указанных воздействиях. По-видимому, избыточное количество молочной кислоты в некоторой степени восполняет дефицит энергообмена в мозговой ткани.

Другой компенсаторной реакцией при связном дыхании является блокирование почечного механизма задержки оснований, в результате чего происходит выведение некоторого дополнительного количества щелочей в мочу. При этом происходит существенный сдвиг РН мочи в щелочную сторону. Результатом действия этого механизма является известный мочегонный эффект и растворение камней кислотного состава.

Таким образом, вся физиология дыхательных психотехник представляет собой ряд парадоксов, которые  требуют дальнейших углубленных  исследований. Их результаты, по-видимому, могут потребовать пересмотра существующих в настоящее время представлений о механизмах поддержания гомеостаза при связном дыхании для объяснения накопленных к настоящему времени практикой фактов об ее адаптивной роли.

По полученным нами данным, в отличие от исследований Л.Л. Шик  и ряда других авторов, связное дыхание не приводит к снижению показателей эффективности внешнего дыхания, а напротив, вентиляция мертвого пространства даже снижается при существенном росте альвеолярной вентиляции.

Значительные потери углекислого газа с выдыхаемым воздухом наблюдались лишь в первые 10-15 минут интенсивного дыхания. Происходило кратное увеличение (в ряде наблюдений в 3-4 раза) дыхательного коэффициента. Угловой коэффициент на наиболее крутом участке кривой потери CO2 составляет от 150 до 200 мл/мин, в результате чего общий его дефицит за это время (то есть превышение выделения CO2 над потреблением O2) составил 2,3±0,07 л. В дальнейшем на протяжении всего времени исследования дефицит углекислого газа практически не возрастал, несмотря на интенсивную работу аппарата внешнего дыхания. Это проявлялось в восстановлении практически до исходных значений дыхательного коэффициента, значительном и постепенно нарастающем увеличении вентиляционного коэффициента для CO2. Значения PETO2 и РЕТCO2 (парциального давления O2 и CO2 в альвеолярном воздухе) сохраняли стабильность на протяжении всего эксперимента. Степень гипокапнии при этом была весьма существенной – до 15-20 мм.рт.ст, а в ряде случаев – даже ниже.

Наиболее интересным феноменом, наблюдаемым при длительной связном дыхании, и заслуживающим самого пристального внимания на наш взгляд, является прекращение потерь CO2, отмечаемое в наших исследованиях с 10-15 минуты воздействия, несмотря на интенсивную вентиляцию альвеол, как уже говорилось.

Известно, что диффузионная способность легких для CO2 примерно в 20 раз выше, чем для O2, поэтому проблемы ограничения диффузии для CO2 практически не существует. Считается, что общее количество выделяемого легкими CO2 зависит от его концентрации в альвеолярном газе и объема альвеолярной вентиляции. Механизмами, обычно корригирующими соответствие локального кровотока данному объему вентиляции, являются констрикция легочных сосудов в гиповентилируемых участках и констрикция бронхов в гипервентилируемых участках.

Информация о работе Психология дыхания, музыки, движения