Психология дыхания, музыки, движения

Автор: Пользователь скрыл имя, 12 Февраля 2013 в 20:54, монография

Описание работы

Монография доктора психологических наук, профессора Владимира Васильевича Козлова является уникальной работой в теории и практическом приложении психологии. В книге изложена новейшая психотехнология личностного роста и самоисследования, сочетающая изыски музыкотерапии, танцевально-двигательной и телесной психологии, а также методов использования измененных состояний сознания, вызываемых дыхательными психотехниками.
Представляет интерес для психологов, педагогов, психотерапевтов, психиатров, а также других специалистов, интересующихся проблемами личностного роста.

Работа содержит 1 файл

Козлов В.В. - Психология дыхания, музыки, движения (МАПН, 2009, ).doc

— 810.00 Кб (Скачать)

Одним из важнейших механизмов адаптации человека ко многим экстремальным условиям является связное дыхание. Она возникает непроизвольно при адаптации к условиям высокогорья, при тяжелом физическом труде, эмоциональном стрессе и в ряде других случаев. Произвольное связное дыхание используется для расширения границ адаптации человека в спортивной медицине, физиологии труда, авиационной и космической медицине. Роль связного дыхания при всех указанных состояниях заключается в повышении альвеолярной вентиляции и увеличении насыщения крови кислородом. Однако это сопровождается и рядом негативных эффектов, наиболее значительным из которых является гипокапния и алкалоз. В условиях интенсивной физической активности, снижения парциального давления кислорода во вдыхаемом воздухе или кумулятивным действии этих факторов, неблагоприятное действие связного дыхания в значительной степени компенсируется.

Изучению физиологических  механизмов при длительной связном дыхании, возникающей при высотной гипоксии и гипоксии нагрузки, посвящено значительное количество исследований.

Длительное связное дыхание в отсутствии физической активности и при обычном парциальном давлении кислорода во вдыхаемом воздухе является до настоящего времени практически не изученной. Литературные данные по этому вопросу, как правило, ограничиваются лишь несколькими первыми минутами воздействия.

В 30-х годах в связи  с массовым развитием физкультуры  и спорта в нашей стране появились  первые попытки применить связное дыхание для повышения работоспособности человеческого организма. Несмотря на противоречивость данных, полученных различными авторами по этому вопросу, интерес к нему до сих пор не утрачен. Проба с максимальной произвольной вентиляцией для определения функционального состояния системы дыхания стала применяться с 1933 г. и с тех пор тесно связана со спортивной практикой.

В литературе имеется  довольно обширный материал, свидетельствующий  о том, что непроизвольная связное дыхание сопутствует творческому умственному труду. В особенности это относится к процессу обучения, который сопровождается нервно-эмоциональным напряжением.

Контролируемое связное дыхание используется в терапии острого инфаркта миокарда. Отмечены случаи непрерывного многолетнего искусственного связного дыхания легких при параличе дыхательных мышц.

И.С. Гуревичем (1946) показана чрезвычайно высокая эффективность связного дыхания при сравнении разных способов лечения такого осложнения боевой психической травмы как сурдомутизм.

Иногда контролируемое связное дыхание используют при анестезии, в акушерстве перед интубацией для создания благоприятной ситуации в газовом составе крови роженицы.

Связное дыхание как функциональная проба используется в клинической практике:

  • для выявления скрытой патологии;
  • для оценки тяжести патологического состояния;
  • у здоровых людей для определения адаптационных резервных возможностей организма (спортсмены, альпинисты, летчики, водолазы, космонавты и тому подобные).

Хотя произвольное связное дыхание сопровождается развитием гипокапнии, ее также можно считать «адаптивной», но не с биологической, а с социальной точки зрения. Она нашла широкое применение в профессиональной деятельности, например у певцов, музыкантов, играющих на духовых инструментах, у стеклодувов, в спорте.

Известно, что при осуществлении  как произвольного, так и непроизвольного связного дыхания степень снижения парциального давления углекислого газа в альвеолярном воздухе у разных людей неодинакова.

При градуальном увеличении минутной вентиляции большая часть  вдыхаемого воздуха приходится на долю альвеолярного мертвого пространства, то есть практически не участвует в газообмене [463]. Однако в процессе связном дыхании происходят и противоположно направленные изменения, приводящие к увеличению разницы PaA CO2 и расчетной величины шунта венозной крови в легких. Этот факт  свидетельствует о наличии в легких специальных механизмов, препятствующих прогрессированию гипокапнии.

У взрослого человека «запасы» CO2 составляют величину порядка 120 л. Возникает вопрос: какое количество CO2 может быть удалено из организма в результате связном дыхании и откуда происходит его «вымывание»?

Не удалось выявить  значительное влияние произвольного связного дыхания на кровоток в легких. Данные по динамике этих показателей, полученные в процессе двухминутного недозированного связного дыхания, свидетельствуют о том, что наиболее отчетливые изменения в системе кровообращения как мужчин, так и женщин происходят к концу первой минуты пробы, когда, как известно, имеет место быстрое падение РА CO2. В дальнейшем, к концу второй минуты связном дыхании, наряду со снижением легочной вентиляции эти сдвиги стабилизировались и даже возникла тенденция изменения показателей в сторону фоновых данных, наиболее выраженная у мужчин, у которых они стали недостоверными по сравнению с фоном.

При этом изменение рН крови и других сред выражено не в одинаковой степени. В спинномозговой жидкости кислотно-щелочное равновесие меняется в меньшей степени, чем в крови, благодаря наличию стабилизирующей системы, в частности гематоэнцефалического барьера.

Усиление вентиляции приводит к значительным изменениям метаболизма клеток мозга. Происходят сдвиги обмена глюкозы и других веществ. Высказано мнение, что разнообразие симптомов, проявляющихся при связном дыхании, связано с неодинаковыми механизмами компенсации дыхательного алкалоза у разных людей. Примечательно, что во время изокапническом связном дыхании при частичной компенсации гипокапнии ощущения у обследуемых, как правило, отсутствуют.

Двукратное усиление дыхания (РА CO2 = 26,1 мм рт.ст., рН =7,53) в течение 10 мин. сопровождается появлением эйфории, легкого головокружения, сухости во рту, саливации, першения в горле, заложенности ушей и др. При снижении РА CO2 ниже 20-25 мм рт.ст. (3-4-x кратная связное дыхание) появляются признаки парастезии, онемение кончиков пальцев рук и ног, сведение губ, головокружение, мелькание «мушек перед глазами».

Вопрос о произвольном связном дыхании как об одном из средств, расширяющих границы адаптации организма человека к влиянию гипоксии, теоретически почти не разработан. В практическом плане такие попытки были сделаны. Так, Дункер и Пальме проводили эксперименты с дозированной гипервентиляцией в барокамере на высоте 7500-8000 м. При этом управляемое дыхание позволило им улучшить состояние обследуемых и продлить время пребывания на высоте [524]. Фенн, Ран, Отис (1949) и другие рекомендовали применять связное дыхание (при которой уровень вентиляции превосходит нормальный более, чем вдвое) как средство увеличения толерантности организма человека к большим высотам в аварийных ситуациях. В исследованиях В.Б. Малкина (1990) проводилась дозированная связное дыхание в целях поддержания на одинаково высоком (90%) уровне насыщения крови кислородом в условиях барокамерных подъемов на большие высоты (до 8000 м). Отвлечение внимания обследуемых от показаний оксиметра приводило к уменьшению вентиляции и времени пребывания их на высоте.

Таким образом, как показал  анализ литературы, вопрос использования  дыхательных психотехник, основанных на произвольном связном дыхании в целях повышения стрессоустойчивости, не является в достаточной степени обоснованным изучением физиологических механизмов состояний, возникающих при этом.

Нами (Ю.А.Бубеев, В.В.Козлов) анализировались результаты 345 дыхательных процессов продолжительностью от 45 мин. до 2 часов с участием 185 обследуемых в возрасте от 20 до 43 лет. Проведено комплексное исследование физиологических систем организма при различных вариантах гипервентиляционных техник.

Функции внешнего дыхания, газообмена, энергетики и метаболизма  изучались на спироэргометрической системе «2900» («SensorMedics», США). Она позволяла исследовать более 100 параметров дыхания за каждый дыхательный цикл (режим breath by breath). Спирометрические показатели определялись с помощью масс-флоуметра. Парциальное давление кислорода и углекислого газа в выдыхаемом воздухе измерялось циркониевым и инфракрасным датчиком.

Парциальное давление кислорода  и углекислого газа в тканях определялось транскутально с помощью прибора  фирмы «Radiometеr» (Дания).

Функциональное состояние  сердечно-сосудистой системы оценивалось по результатам непрерывного мониторирования ЭКГ и импедансной тетраполярной реографии с помощью реоанализатора. Ударный объем измерялся по методу Кубичека. Артериальное давление измерялось ежеминутно с помощью автоматического устройства методом объемной компрессионной осциллометрии (АПКО 8РИЦ)

Состав тела оценивался по данным калиперометрии.

Изучение электрической  активности головного мозга проводилось  с помощью анализатора «Энцефалан 131-01». Использовалась монополярная монтажная  схема. Референтные электроды располагались на мочках ушей. Запись проводилась непрерывно по 19 каналам. При обработке производился расчет биполярных, усредненных отведений и отведения от источника (source derivation).

Для стереоэнцефалографического определения источников активности использовался метод трехмерной локализации, позволяющий по заданной модели определить эквивалентный источник электрической активности и связать его с определенными структурами мозга. Суть метода сводилась к построению посредством последовательного перебора трехмерной модели источника, включающей его модуль, ориентацию и локализацию, математически вычисленная напряженность поля которого на поверхности скальпа была бы максимально близкой к реальному полю.

При анализе данных использовалась следующая периодизация:

  • фон сидя (с открытыми и закрытыми глазами),
  • фон лежа,
  • фон лежа после 10 мин. релаксации,
  • собственно дыхательная сессия (45-90 мин.),
  • период восстановления (30 мин.),
  • период последействия (от 1 до 30 сут).

 

Как известно, структура  дыхания определяется тремя основными переменными: частотой, глубиной и соотношением вдоха и выдоха.

В первой серии исследований нами изучалось влияние на газообмен  эффекта связности, то есть дыхания  без пауз между вдохом и выдохом. Обследуемому предлагалось после произвольного дыхания в комфортной расслабленной позе в течение 10-20 минут перейти на связное дыхание, но удерживать его частоту и глубину в прежних пределах, ориентируясь по диапазону на мониторе, полученному при произвольном дыхании.

Как показали результаты этой серии исследований, уже переход на связное дыхание, даже при обычной его частоте и глубине, приводил к значимым изменениям параметров газообмена, которые можно охарактеризовать как повышение его эффективности. Снижалась вентиляция мертвого пространства, повышалась вентиляция альвеол, увеличивался дыхательный коэффициент. Снижались вентиляционные коэффициенты для кислорода и углекислого газа. Появлялась значимая тенденция к «вымыванию» CO2 из крови, увеличивалось парциальное давление O2 в альвеолярном воздухе (рис. 1).

 

Рис 1. Динамика альвеолярной вентиляции при связном дыхании.

0-5 мин. –  фон при произвольном дыхании, 6-11 мин. – связное дыхание.

 

Суммарные энерготраты  за время исследования не имели значимых отличий, однако тенденция к их снижению имелась.

Проявлением эффекта  связности являлось увеличение продолжительности  выдоха в 1,5-2 раза и резкое снижение колеблемости (вариационного размаха) длительности дыхательных циклов.

Несмотря на незначительные, на первый взгляд, величины сдвига баланса  между потреблением кислорода и выделением углекислого газа, за 40-60 минут исследования при связном дыхании обычной частоты и глубины происходило нарастание дефицита углекислоты, в результате чего его суммарные значения составляли около 1 литра.

Изменения системной и периферической гемодинамики заключались в тенденции к снижению частоты сердечных сокращений и сосудистого тонуса. Снижались минимальное артериальное давление, общее периферическое сопротивление и минутный объем кровообращения.

Таким образом, со стороны как системы дыхания, так и кровообращения при связном дыхании с обычной частотой и глубиной, можно отметить сходные по направленности реакции, приводящие к переходу на более низкий и экономичный уровень функционирования.

Как показали результаты второй серии исследований, где нами изучались эффекты одного из форматов частого и глубокого связного дыхания – «свободного дыхания», его воздействие сопровождалось более выраженными изменениями со стороны системы внешнего дыхания.

Типичные кривые, иллюстрирующие динамику основных показателей дыхания и газоэнергообмена у одного обследуемого, представлены на рис. 2.

 

 

Рис. 2. Динамика вентиляционных эквивалентов O2 и CO2 (обозначения см. рис. 9).

 

Как показали результаты исследований, воздействие связном дыхании сопровождалось выраженными изменениями показателей системы внешнего дыхания. Происходило 5-9-кратное увеличение минутной вентиляции легких (с 10,6±1,3 л/мин до 85,1±4,9 л/мин).

Информация о работе Психология дыхания, музыки, движения