Автор: Пользователь скрыл имя, 27 Сентября 2011 в 13:48, курс лекций
Предлагаемый конспект лекций содержит основные понятия кристаллографии, рассматривает основы структурного анализа. Конспект представляет первую часть излагаемого курса “Кристаллография и структурный анализ полупроводниковых материалов” и является дополнением к читаемому курсу “Технология материалов и элементов электронной техники”, что необходимо при подготовке специалистов направления 550700 Электроника и микроэлектроника. Курс лекций обеспечивает проведение практических занятий со студентами при ознакомлении их с экспериментальными методами исследования структуры полупроводников.
hn1
= hn0
- Eотд
,
где Eотд - кинетическая энергия электрона отдачи.
Теория и опыт показывают, что изменение частоты или длины волны при квантовом рассеянии не зависит от порядкового номера элемента Z, но зависит от угла рассеянияy. При этом
ly - l0 = l = ×(1 - cos y) @ 0,024 (1 - cosy) , (2.16)
где l0 и ly - длина волны рентгеновского кванта до и после рассеяния,
m0 - масса покоящегося электрона, c - скорость света.
Из формул видно, что по мере увеличения угла рассеяния, l возрастает от 0 (при y = 0°) до 0,048 Å (при y = 180°). Для мягких лучей с длиной волны порядка 1 Å эта величина составляет небольшой процент примерно 4-5 %. Но для жестских лучей (l = 0,05 - 0,01 Å ) изменение длины волны на 0,05 Å означает изменение l вдвое и даже в несколько раз.
Ввиду того, что квантовое рассеяние некогерентно (различно l, различен угол распространения отраженного кванта, нет строгой закономерности в распространении рассеянных волн по отношению к кристаллической решетке), порядок в расположении атомов не влияет на характер квантового рассеяния. Эти рассеянные рентгеновские лучи участвуют в создании общего фона на рентгенограмме. Зависимость интенсивности фона от угла рассеяния может быть теоретически вычислена, что практического применения в рентгеноструктурном анализе не имеет, т.к. причин возникновения фона несколько и общее его значение не поддается легкому расчету.
Рассмотренные нами процессы фотоэлектронного поглощения, когерентного и некогерентного рассеяния определяют, в основном ослабление рентгеновских лучей. Кроме них возможны и другие процессы, например, образование электронно-позитронных пар в результате взаимодействия рентгеновских лучей с ядрами атомов. Под воздействием первичных фотоэлектронов с большой кинетической энергией, а также первичной рентгеновской флюоресценции, возможно возникновение вторичного, третичного и т.д. характеристического излучения и соответствующих фотоэлектронов, но уже с меньшими энергиями. Наконец, часть фотоэлектронов (а частично и электронов отдачи) может преодолевать потенциальный барьер у поверхности вещества и вылетать за его пределы, т.е. может иметь место внешний фотоэффект.
Все отмеченные явления, однако, значительно меньше влияют на величину коэффициента ослабления рентгеновских лучей. Для рентгеновских лучей с длинами волн от десятых долей до единиц ангстрем, используемых обычно в структурном анализе, всеми этими побочными явлениями можно пренебречь и считать, что ослабление первичного рентгеновского пучка происходит с одной стороны за счет рассеяния и с другой – в результате процессов поглощения. Тогда коэффициент ослабления можно представить в виде суммы двух коэффициентов.
m/r = s/r + t/r , (2.17)
где s/r - массовый коэффициент рассеяния, учитывающий потери энергии за счет когерентного и некогерентного рассеяния; t/r - массовый коэффициент поглощения, учитывающий главным образом потери энергии за счет фотоэлектрического поглощения и возбуждения характеристических лучей.
Вклад поглощения и рассеяния в ослабление рентгеновского пучка неравнозначен. Для рентгеновских лучей, используемых в структурном анализе, некогерентным рассеянием можно пренебречь. Если учесть при этом, что величина когерентного рассеяния также невелика и примерно постоянна для всех элементов, то можно считать, что
m/r » t/r , (2.18)
т.е. что
ослабление рентгеновского пучка определяется
в основном поглощением. В связи
с этим для массового коэффициента
ослабления будут справедливы
Выбор излучения. Характер зависимости коэффициента поглощения (ослабления) от длины волны определяет в известной мере выбор излучения при структурных исследованиях. Сильное поглощение в кристалле значительно уменьшает интенсивность дифракционных пятен на рентгенограмме. Кроме того, возникающая при сильном поглощении флюоресценция засвечивает пленку. Поэтому работать при длинах волн, несколько меньших границы поглощения исследуемого вещества, невыгодно. Это можно легко понять из схемы рис. 2.6.
1.
Если излучать будет анод, состоящий
из тех же атомов, как и исследуемое
вещество, то мы получим, что
граница поглощения, например
Рис.2.6.
Изменение интенсивности
K-край поглощения кристалла (рис.2.6, кривая 1), будет несколько сдвинут относительно его характеристического излучения в коротковолновую область спектра. Этот сдвиг - порядка 0,01 - 0,02 Å относительно линий края линейчатого спектра. Он всегда имеет место в спектральном положении излучения и поглощения одного и того же элемента. Поскольку скачок поглощения соответствует энергии, которую надо затратить, чтобы удалить электрон с уровня за пределы атома, самая жесткая линия K-серии соответствует переходу на K-уровень с наиболее далекого уровня атома. Понятно, что энергия E, необходимая для вырывания электрона за пределы атома, всегда несколько больше той, которая освобождается при переходе электрона с наиболее удаленного уровня на тот же K-уровень. Из рис. 2.6 (кривая 1) следует, что, если анод и исследуемый кристалл - одно вещество, то наиболее интенсивное характеристическое излучение, особенно линии Ka и Kb, лежит в области слабого поглощения кристалла по отношению к границе поглощения. Поэтому поглощение такого излучения кристаллом мало, а флюоресценция слаба.
2. Если мы возьмем анод, атомный номер которого Z на 1 больше исследуемого кристалла, то излучение этого анода, согласно закону Мозли, несколько сместится в коротковолновую область и расположится относительно границы поглощения того же исследуемого вещества так, как это показано на рис. 2.6, кривая 2. Здесь поглощается Kb - линия, за счет чего появляется флюоресценция, которая может мешать при съемке.
3.
Если разница в атомных
Наиболее подходящим, таким образом, является анод, характеристическое излучение которого лежит в области слабого поглощения исследуемым образцом.
Фильтры. Рассмотренный нами эффект селективного поглощения широко используется для ослабления коротковолновой части спектра. Для этого на пути лучей ставится фольга толщиной несколько сотых мм. Фольга изготовлена из вещества, у которого порядковый номер на 1-2 единицы меньше, чем Z анода. В этом случае согласно рис.2.6 (кривая 2) край полосы поглощения фольги лежит между Ka - и Kb- линиями излучения и Kb - линия, а также сплошной спектр, окажутся сильно ослабленными. Ослабление Kb по сравнению с Ka - излучением порядка 600. Таким образом, мы отфильтровали b-излучение от a-излучения, которое почти не изменяется по интенсивности. Фильтром может служить фольга, изготовленная из материала, порядковый номер которого на 1-2 единицы меньше Z анода. Например, при работе на молибденовом излучении (Z = 42), фильтром могут служить цирконий (Z = 40) и ниобий (Z = 41). В ряду Mn (Z = 25), Fe (Z = 26), Co (Z = 27) каждый из предшествующих элементов может служить фильтром для последующего.
Понятно,
что фильтр должен быть расположен
вне камеры, в которой производится
съемка кристалла, чтобы не было засветки
пленки лучами флюоресценции.
2.4.
Дифракция рентгеновских
лучей в кристаллах
Напомним, что дифракция - это явление или эффект, который является результатом двух процессов: когерентного рассеяния и интерференции рассеянных волн. В результате этих процессов амплитуда и, следовательно, интенсивность рассеянных волн меняется в зависимости от направления их распространения. Суммарная дифракционная картина определяется с одной стороны тем, какого строение объекта, являющегося источником рассеянных волн, и с другой - спектральным составом излучения.
Проведем анализ дифракционного эффекта, создаваемого при взаимодействии рентгеновских лучей с отдельным атомным рядом и трехмерным кристаллом при постоянной длине волны. Кинематическая теория рассеяния при рассмотрении дифракции на кристалле вводит некоторые ограничения, основные из которых следующие:
а)
атомы принимаются
б)
атомы рассматриваются как
в) амплитуда рассеянных волн во всех направлениях от одного атома одинакова.
Эти допущения упрощают рассуждения и практически не сказываются на виде дифракционной картины.
Рассмотрим атомный ряд с периодом идентичности, равным a (рис.2.7), и примем, что на него падает пучок монохроматических λ=сonst рентгеновских лучей. Угол падения их обозначим через a0. Атомы примем за идентичные.
Учитывая, что расстояние между атомами в кристалле порядка 2-3 Å, а размеры исследуемых кристаллов обычно не меньше 0,2 - 0,3 мм (т.е. миллионы Å), любой атомный ряд в кристалле можно считать бесконечным. Таким образом, принимаем рассматриваемый нами атомный ряд бесконечным.
Расстояние
от кристалла до фотопленки в камерах
обычного типа 30 - 40 мм и более, т.е. много
больше размера кристалла. Тогда
лучи, идущие от разных атомов ряда, в
определенном направлении можно считать
практически параллельными. Лучи, рассеянные
отдельным атомом ряда, сферически распространяются
во все стороны и интерферируют между
собой. Если в каком-нибудь направлении
разности фаз между соседними лучами составляют
целое число длин волн, то происходит сложение
их амплитуд, и в
Рис. 2.7. Рассеяние рентгеновских лучей на атомном ряде.
этом направлении наблюдается так называемый интерференционный максимум. Если разность фаз соседних лучей не равна ml, то луч будет ослаблен или совсем погашен. Практически в последнем случае в результате наложения колебаний происходит полное исчезновение электромагнитного поля.
Рассмотрим интерференцию рассеянных волн для какого-то направления максимума интерференции, составляющего с атомным рядом угол a (рис.2.7). Усиление рассеянных рентгеновских волн будет наблюдаться в тех случаях, когда разность хода двух соседних лучей равна целому числу длин волн, т.е. если
Информация о работе Лекции по "Кристаллографии и методы исследования структур"