Автор: Пользователь скрыл имя, 27 Февраля 2012 в 09:12, доклад
Что такое античная наука? Что такое наука вообще? Каковы основные признаки науки, отличающие ее от других видов материальной и духовной деятельности человека - ремесел, искусства, религии? Удовлетворяет ли этим признакам тот культурно-исторический феномен, который мы называем античной наукой?
Большой интерес для историка науки представляет изложенная в «Тимее» теория материи, которую можно рассматривать как своеобразный сплав концепции четырех элементов Эмпедокла и атомистики Демокрита. Платон признает четыре так называемые стихии (з1о1сЬе1а) основными компонентами материального мира, но он не считает их элементарными в строгом смысле слова. В их основе лежит общая, неопределенная материя, которую Платон называет Кормилицей или Восприемницей и которая, по его словам, «растекается влагой, пламенеет огнем и принимает формы земли и воздуха». Эти четыре стихии (или «четыре рода», как их называет Платон) упорядочены с помощью образов и чисел, а именно состоят из мельчайших невидимых частиц, имеющих формы правильных многогранников. Так, частицы огня суть тетраэдры, воздуха — октаэдры, воды — икосаэдры, земли — кубы. При этом Платон, очевидно, учитывал чувственно воспринимаемые свойства соответствующих стихий — подвижность, устойчивость, способность воздействовать на другие вещи и т. д. Что касается пятого многоугольника — додекаэдра, то он остался не у дел. В «Тимее» Платон ограничился неясным замечанием, что бог определил его для вселенной в целом. Однако в «Послезаконии», написанном позднее, вводится пятый элемент — эфир, частицам которого придается форма додекаэдра.
Поверхность каждого
из четырех многогранников, сопоставленных
с четырьмя элементами, может быть
представлена в виде комбинации некоторого
числа треугольников — либо неравнобедренных,
с углами при гипотенузе 30 и 60°, либо
равнобедренных, с углами 45°. Эти
треугольники рассматриваются Платоном
как элементарные структурные единицы,
из которых построены вещи. С помощью
треугольников первого типа могут
быть получены фигуры частиц огня, воздуха
и воды, с помощью вторых —
только кубы, из которых состоит
земля. По этой причине три первые
стихии могут переходить друг в друга
путем перестройки
Поскольку из одних
и тех же элементарных треугольников
можно построить правильные многогранники
различных размеров, то каждая стихия
представляет собой не одно строго
однородное вещество, а скорее целый
класс веществ, обладающих некоторыми
общими свойствами, но в чем-то могущих
существенно отличаться друг от друга.
С точки зрения современной физики,
каждый такой класс аналогичен определенному
агрегатному состоянию
Весьма интересны соображения Платона о понятиях верха и низа, тяжести и легкости. Понятия верха и низа, по его мнению, имеют относительный характер. Люди, находящиеся в других точках поверхности земного шара, будут называть верхом и низом не то, что мы; это происходит потому, что мы называем низом направление, куда падают тяжелые вещи; падают же они к центру космоса. Они туда стремятся не в силу своей природы, а потому, что сосредоточенная в центре космоса земля притягивает к себе родственные ей «землеподобные» вещи по принципу «подобное стремится к подобному». Аналогично этому огненная периферия космоса стала бы притягивать к себо- части огня, если бы кто-либо вознамерился оторвать их от нее. То же справедливо по отношению к воздуху и воде. Таким образом, у Платона уже имеется предвосхищение идеи гравитации, привязанной, правда, к концепции четырех элементов.
Занимала Платона и проблема движения, обсуждению которой посвящен ряд мест в его поздних диалогах (начиная с «Теэтета»). Итогом этих размышлений следует считать классификацию движений, приводимую в «Законах». Из десяти видов движений Платон выделяет самодвижение, присущее жизни; причиной такого движения может быть лишь душа. При этом Платон приписывает души не только живым организмам, но также небесным светилам и космосу в целом. Излагая свою концепцию, Платон резко полемизирует с «физиками», объяснявшими самодвижение вещей их «природой». Биологические взгляды Платона несут на себе печать его общефилософских воззрений. По его мнению, жизнь на Земле началась с появления человеческого рода. Творец мира создал человека как самое совершенное существо, в наибольшей степени приближающееся к образу божества. Все остальные виды живых существ возникли из людей как их несовершенные модификации. Наряду с этими фантастическими идеями Платон высказывает ряд интересных соображений о соотношении между строением отдельных органов и их функциями. Следуя традиции, идущей от Алкмеона, он придавал особое значение мозгу, который, по его мнению, служит местопребыванием высшей, бессмертной части души. Две другие части души имеют смертную природу и расположены соответственно в сердце и в области живота.
В каком отношении
нарисованная в «Тимее» картина
мира находится к науке «о природе»?
На этот вопрос нельзя дать бесспорного
ответа. С одной стороны, воззрения
Платона продолжают традиции нерасчлененной
науки VI—V вв. до н. э. Спекулятивный
характер этих воззрений, рассмотрение
мира как единого целого, сочетание
космогонической и
С другой стороны, в системе Платона появляются характерные черты, которые отсутствовали в учениях досо-кратиков. Среди них мы отметим, во-первых, уже упомянутое выше крайне враждебное отношение Платона к понятию «природы», которое лежало в основе мироощущения большинства досократиков; во-вторых — провозглашенную Платоном (хотя еще и не реализованную им) программу математизации науки; в-третьих, четкое отделение философских и гносеологических проблем от проблем естественнонаучных.
В своей картине мира Платон стремился выйти за рамки науки «о природе». Но эта задача могла быть решена лишь путем создания наук нового типа, что действительно было сделано, но не философами, а самими учеными — математиками, астрономами, естествоиспытателями.
Евдокс Книдский
(родился ок. 400 г. до н. э.) был ключевой
фигурой в греческой науке
своего времени. Нам он известен прежде
всего как математик и
О жизни Евдокса позднейшие авторы сообщают следующее. В молодости он изучал математику у Архита в Таренте и медицину у Филистиона в Сицилии. 23-х лет он прибыл в Афины и, будучи очень бедным, поселился в гавани Пирея, откуда ежедневно ходил пешком в платоновскую Академию и обратно. Позднее, при содействии друзей, он совершил путешествие в Египет, где набирался астрономических знаний у жрецов Гелиополя. Вернувшись в Грецию, он основал собственную школу в Кизике (на южном берегу Мраморного моря). Получив широкую известность, Евдокс еще раз побывал в Афинах, где беседовал с Платоном на философские темы. Умер он 53-х лет от роду на своей родине, в Книде.
По своим философским
взглядам Евдокс в ряде вопросов примыкал
к Платону. Он признавал теорию идей,
но в отличие от Платона полагал,
что идеи как-то «примешиваются»
к чувственно воспринимаемым предметам
(так, идея белого цвета присутствует
в белых предметах, обусловливая
их белизну). Высшее благо в отличие
от Платона он отождествлял с наслаждением,
приближаясь таким образом, но крайней
мере теоретически, к гедонизму (с
этой точкой зрения Платон полемизирует
в «Филе-бе» — возможно, как
раз под влиянием бесед с Евдок-сом).
Впрочем, сила Евдокса заключалась
не в философии и, что очень
важно, его философские воззрения
никак не влияли на его научные
изыскания. Евдокс, бесспорно, был великим
математиком. Развивая достижения Архита
и Теэтета в области теории
пропорций, он построил общую теорию
отношений, основанную на новом определении
величины. Если раньше теоремы теории
отношений приходилось
Другим важнейшим вкладом Евдокса в математику была разработка так называемого «метода исчерпывания», заложившего основы теории пределов и подготовившего почву для позднейшего развития математического анализа. В основе «метода исчерпывания» лежит следующее положение: если от какой-либо величины отнять половину или более, затем ту же операцию проделать с остатком, и так поступать дальше и дальше, то через конечное число действий можно дойти до такой величины, которая будет меньше любого наперед заданного числа. С помощью этого метода Евдокс впервые строго доказал, что площади двух кругов относятся как квадраты их диаметров (само это положение было известно еще Гиппократу Хиосскому); далее, что объем пирамиды равен 7з объема призмы с теми же основанием и высотой и что объем конуса равен '/з объема цилиндра с теми же основаниями и высотой. Два последних положения, как мы видели выше, древние приписывали Демокриту, который, однако, не дал им строгого обоснования. В дальнейшем «метод исчерпывания» был развит Архимедом. В «Началах» Евклида он изложен в XII книге.
Для истории астрономии значение Евдокса было, пожалуй, еще более значительным. Фактически его можно считать создателем античной теоретической астрономии как самостоятельной науки, ни в какой степени не зависевшей от космологических спекуляций досократиков. Любопытно, что подлинное величие Евдокса-астроно-ма было оценено историками науки лишь в XIX в. Это объяснялось в первую очередь тем, что все сочинения Евдокса оказались безнадежно утерянными, а свидетельства древних авторов (например, комментатора Аристотеля Симпликия), в которых сообщалось о его достижениях, страдали отрывочностью и нечеткостью. В результате исследований, проводившихся учеными на протяжении нескольких поколений, выдающийся итальянский астроном Д. В. Скиапарелли (1835—1910) смог дать реконструкцию теории Евдокса, которая до сих пор принимается большинством историков астрономии. В настоящее время астрономическая теория Евдокса предстает перед нами примерно в следующем виде.
Существует предание, что инициатором создания теории Евдокса был Платон. Уже с давних времен среди греческих мыслителей господствовало убеждение, что космос должен иметь сферическую форму. Это убеждение подкреплялось широко распространенным мнением, что наиболее совершенным геометрическим телом является сфера (шар), подобно тому как наиболее совершенной плоской геометрической фигурой считался круг. По этим причинам казалось вполне естественным предположить, что в сферическом космосе все небесные тела движутся по круговым орбитам. Это предположение, однако, оказывалось непосредственно справедливым лишь для неподвижных звезд. Уже орбиты Солнца и Луны обнаруживали существенные отклонения от строго круговой формы, а что касается планет, то их движения относительно "неподвижных звезд состояли из ряда прямых и обратных перемещений, причем их видимые траектории описывали на небесном своде причудливые завитки и петли. И вот Платон будто бы поставил перед своими учениками задачу — представить движения небесных тел в виде комбинаций равномерных круговых движений. Эта задача была блестяще решена Евдоксом.
Предложенная Евдоксом
модель космоса состояла из двадцати
семи равномерно вращающихся вокруг
Земли гомоцентрических сфер, т. е. таких
сфер, центры которых совпадают, но
оси которых могут, вообще говоря,
иметь различное направление. Одной
из этих сфер была сфера неподвижных
звезд, совершавшая за одни сутки
полный оборот вокруг осп, проходившей
через полюса Земли. Плоскость экватора
этой сферы совпадала с плоскостью
земного экватора. Остальные двадцать
шесть сфер были распределены между
прочими небесными телами: Солнцу
и Луне были приданы по три сферы,
а пяти планетам — по четыре. Рассмотрим
теперь, как с помощью трех вращающихся
сфер объяснялись видимые
Аналогичным образом
описывалось и движение Луны. Первая
лунная сфера соответствовала