Автор: Пользователь скрыл имя, 12 Января 2012 в 15:43, курсовая работа
Расчет ставки дисконта – один из основных этапов доходного подхода к оценке компании, т.к. ее величина значительно влияет на конечный результат, получаемый в рамках доходного подхода (и конечной стоимости компании в целом). Следовательно, важность ее наиболее правомерного расчета очевидна.
Тем не менее, существует ряд проблем информационного и методологического характера, с которыми приходится сталкиваться при расчетах ставки дисконтирования. Такое положение вещей во многом связано с тем, что наиболее часто используемые методы построения ставки дисконтирования разработаны зарубежными специалистами для использования в развитых странах с эффективно функционирующими финансовыми рынками. Одним из таких методов является метод, основанный на использовании теории арбитражного ценообразования. Метод арбитражного ценообразования нельзя назвать распространенным методом расчета ставки дисконтирования, но, тем не менее, он имеет ряд преимуществ.
Исследование данной темы курсовой работы имеет важное теоретическое значение. Иначе как можно понять функционирование финансовых рынков, познать их взаимосвязь с реальным производством? Возможно, ли вообще будет обобщить опыт использования рыночных механизмов мобилизации и перераспределения ресурсов? В теоретической части работы рассмотрим характеристику, и применение финансовых активов, а также использование моделей оценки стоимости, способствующих более полному использованию ценных бумаг, как для привлечения денежных средств, так и с целью финансирования внешнеэкономических операций и т.п. Практическая часть исследования содержит примеры расчетов по определению доходности различных инвестиционных операций
Введение…………………………………………………………………………….2
Глава 1. Постановка рассматриваемой темы. Методы и модели САРМ…….4
1.1. Развитие теории моделей оценки финансовых активов…………………4
1.2. Основные понятия модели доходности фина.нсовых активов………….6
1.3. Модель оценки стоимости активов (САРМ)…………………..…………9
1.4. Модификация САРМ………………………………………………………22
Глава 2. Модель арбитражного ценообразования (АРТ)……………………23
2.1. Альтернативная теория доходности и риска……………………………..23
2.2. Выбор факторов влияющих на доходность………………………………27
2.3. Графическая иллюстрация.........................................................................29
Глава 3. Использование модели оценки САРМ, АРТ на практике………….30
3.1. Использование модели оценки САРМ……………………………………30
3.2. Теоретические и практические аспекты использования модели арбитражного ценообразования (АРТ)…………………………………………………..31
Заключение………………………………………………………………………33
Практическая часть……………………..……………………………………….36
Список использованной литературы…………………………………………..44
В САРМ зависимость между риском и ожидаемой доходностью графически можно описать с помощью линии рынка капитала (Capital Market Line - CML), которая представлена на рис. 1
Рис. 1. Линия рынка капитала
М - это рыночный портфель, rf - актив без риска; rf L - линия рынка капитала; sm - риск рыночного портфеля; Е(rm) - ожидаемая доходность рыночного портфеля. Все возможные оптимальные (эффективные) портфели, т. е. портфели, которые включают в себя рыночный портфель М, расположены на линии rfL.
Она проходит через две точки - rf и М. Таким образом, линия рынка капитала является касательной к эффективной границе. Все другие портфели, в которые не входит рыночный портфель, располагаются ниже линии rf L. CML поднимается вверх слева направо и говорит о том, что если портфель имеет более высокий риск, то он должен предлагать инвестору и более высокую ожидаемую доходность, и если вкладчик желает получить более высокую ожидаемую доходность, он должен согласиться на более высокий риск.
Наклон СML следует рассматривать как вознаграждение (в единицах ожидаемой доходности) за каждую дополнительную единицу риска, которую берет на себя вкладчик. Когда вкладчик приобретает актив без риска, он обеспечивает себе доходность на уровне ставки без риска rf. Если он стремится получить более высокую ожидаемую доходность, то должен согласиться и на некоторый риск. Ставка без риска является вознаграждением за время, т. е. деньги во времени имеют ценность.
Дополнительная доходность, получаемая инвестором сверх ставки без риска, есть вознаграждение за риск. Таким образом, вознаграждение лица, инвестировавшего свои средства в рыночный портфель, складывается из ставки rf, которая является вознаграждением за время, и премии за риск в размере Е(rf) - rf. Другими словами, на финансовом рынке его участники уторговывают между собой цену времени и цену риска. CML представляет собой прямую линию. Уравнение прямой можно представить следующим образом:
y = a + bx
где: а - значение ординаты в точке пересечения ее линией СML, оно соответствует ставке без риска rf,
b - угол наклона СML.
Угол наклона определяется как
отношение изменения значения функции
к изменению аргумента. В нашем
случае (см. рис. 1) угол наклона равен:
Поскольку ожидаемая доходность (у) есть функция риска (х), то в уже принятых терминах доходности и риска уравнение CML примет вид:
где: si - риск i-го портфеля, для которого определяется уровень ожидаемой доходности,
Е(ri)
- ожидаемая доходность i-го портфеля.
Данное уравнение можно записать следующим образом:
Таким
образом, ожидаемая доходность портфеля
равна ставке без риска плюс произведение
отношения риска портфеля к риску
рыночного портфеля и разности между
ожидаемой доходностью
Таким
образом, ожидаемая доходность портфеля
равна ставке без риска плюс произведение
отношения риска портфеля к риску
рыночного портфеля и разности между
ожидаемой доходностью
Пример. rf = 10%, Е(rm) = 25%,si = 30%,sm = 15%. Определить ожидаемую доходность портфеля. Она равна:
CML
говорит о соотношении риска
и ожидаемой доходности только
для широко
Риск, с которым связано владение активом, можно разделить на две части. Первая составляющая - это рыночный риск (4-216с.). Его также именуют системным или недиверсифицируемым, или неспецифическим. Он связан с состоянием конъюнктуры рынка, общезначимыми событиями, например, войной, революцией. Его нельзя исключить, потому что это риск всей системы. Вторая часть - нерыночный, специфический или диверсифицируемый риск.
Он связан с индивидуальными чертами конкретного актива, а не с состоянием рынка в целом. Например, владелец какой-либо акции подвергается риску потерь в связи с забастовкой на предприятии, выпустившем данную бумагу, некомпетентностью его руководства и т. п. Данный риск является диверсифицируемым, поскольку его можно свести практически к нулю с помощью диверсификации портфеля.
Как показали исследования западных ученых, портфель, состоящий из хорошо подобранных 10-20 активов, способен фактически полностью исключить
нерыночный риск (см. рис. 2).
Широко диверсифицированный портфель заключает в себе практически только рыночный риск. Слабо диверсифицированный портфель обладает как рыночным, так и нерыночным рисками. Таким образом, инвестор может снизить свой риск только до уровня рыночного, если сформирует широко диверсифицированный портфель.
Приобретая
актив, вкладчик рассчитывает получить
компенсацию за риск, на который
он идет. Однако риск состоит из двух
частей. Каким образом рынок оценивает
компоненты риска с точки зрения
ожидаемой доходности? Как было сказано
выше, инвестор способен практически
полностью исключить
Поэтому формирование более диверсифицированного портфеля не ведет к увеличению его расходов. Таким образом, без затрат вкладчик может легко исключить специфический риск. Поэтому в теории предполагается, что нерыночный риск не подлежит вознаграждению, поскольку он легко устраняется диверсификацией. В связи с этим, если инвестор не диверсифицирует должным образом свой портфель, он идет на ненужный риск с точки зрения той выгоды, которую он приносит обществу.
Приобретая, например, акцию, инвестор финансирует производство и таким образом приносит обществу пользу. Покупка акции связана с нерыночным риском, который является неустранимым. Поэтому инвестор должен получать вознаграждение адекватное только данному риску. В противном случае он не приобретет эту бумагу, и экономика не получит необходимые финансовые ресурсы. Однако общество (рынок) не будет вознаграждать его за специфический риск, поскольку он легко устраняется диверсификацией. С точки зрения финансирования потребностей экономики, данный риск не имеет смысла. Таким образом, вознаграждению подлежит только системный риск.
Поэтому стоимость активов должна оцениваться относительно величины именно этого риска. Весь риск актива (портфеля) измеряется такими показателями как дисперсия и стандартное отклонение. Для оценки рыночного риска служит другая величина, которую называют бета (5-322с.).
Для
измерения рыночного риска
Поскольку невозможно сформировать портфель, в который бы входили все финансовые активы, то в качестве него принимается какой-либо индекс с широкой базой. Поэтому доходность рынка - это доходность портфеля, представленного выбранным индексом. Бета рассчитывается по формуле:
или
где: bi - бета i-го актива(портфеля);
Covi, m - ковариация доходности i-го актива (портфеля) с доходностью рыночного портфеля;
Соrri, m - корреляция доходности i-го актива (портфеля) с доходностью рыночного портфеля.
Поскольку величина бета определяется
по отношению к рыночному
где: bm - бета рыночного портфеля.
Бета актива (портфеля) без риска равна нулю, потому что нулю равна ковариация доходности актива (портфеля) без риска с доходностью рыночного портфеля. Величина b актива (портфеля) говорит о том, насколько его риск больше или меньше риска рыночного портфеля. Активы с бетой больше единицы более рискованны, а с бетой меньше единицы - менее рискованны чем рыночной портфель. Относительно величины бета активы делят на агрессивные и защитные.
Бета агрессивных активов больше единицы, а защитных - меньше единицы. Если бета актива равна единице, то его риск равен риску рыночного портфеля. Бета может быть как положительной, так и отрицательной величиной. Положительное значение беты говорит о том, что доходности актива (портфеля) и рынка при изменении конъюнктуры меняются в одном направлении. Отрицательная бета показывает, что доходности актива (портфеля) и рынка меняются в противоположных направлениях.
Подавляющая
часть активов имеет
Например, бета бумаги равна +2. Это значит, что при увеличении ожидаемой доходности рыночного портфеля на 1% доходность бумаги возрастет на 2% и, наоборот, при уменьшении доходности рыночного портфеля на 1% доходность бумаги снизится на 2%. Поскольку бета бумаги больше единицы, то она рискованнее рыночного портфеля.
Если бета бумаги равна 0,5, то при увеличении ожидаемой доходности рынка на 1% ожидаемая доходность бумаги должна возрасти только на 0,5%. Напротив, при снижении доходности рынка на 1% доходность бумаги уменьшится только на 0,5%. Таким образом, риск данной бумаги меньше риска рынка. Если бета равна -2, то при повышении доходности рыночного портфеля на 1% доходность актива снизится на 2% и, наоборот.
Активы
с отрицательной бетой являются
ценными инструментами для
Зная величину беты для каждого из активов, вкладчик может легко сформировать портфель требуемого уровня риска и доходности.
Бета портфеля - это средневзвешенное значение величин бета активов, входящих в портфель, где весами выступают их удельные веса в портфеле. Она рассчитывается по формуле:
где: bP - бета портфеля;
bi - бета i-го актива;
qi - уд. вес i-го актива.
Пример.
Инвестор формирует портфель из трех активов:
А, В и С. bA = 0,8; bB = 0,95; bC = 1,3; qA = 0,5; qB = 0,2; qC = 0,3. Бета портфеля равна: 0,5*0,8 + 0,2*0,95 + 0,3*1,3 = 0,98.
Бета каждого актива рассчитывается на основе доходности актива и рынка за предыдущие периоды времени. Информацию о значениях беты можно получить от аналитических компаний, которые занимаются анализом финансового рынка, а также из периодической печати.
Информация о работе Понять функционирование финансовых рынков