Автор: Пользователь скрыл имя, 18 Сентября 2011 в 23:08, курсовая работа
Целью курсовой работы является выявление факторов влияющих на урожайность зерновых, как положительных, так и отрицательных, путей уменьшения влияния неблагоприятных факторов. При этом чтобы более точно определить закономерности, складывающиеся в развитии урожайности, мы проведем анализ при помощи динамических рядов.
Введение
1. Задачи и назначение статистики урожая и урожайности:
1.1. Понятие об урожае и урожайности и их показатели.
2. Способы определения урожая и урожайности.
3. Рост урожайности культур, применение удобрений, орошение.
2. Организационно – экономическая характеристика Тверской области:
2.1. Природно-климатические условия.
2.2. Организационно-экономическая характеристика области.
3. Экономико-статистический анализ урожая и урожайности зерновых:
3.1. Укрупнение периодов для определения суммарного эффекта интенсификации.
3.2. Сопоставление параллельных рядов изменения урожайности и основных факторов интенсификации земледелия.
3.3. Группировка лет, отличающихся метеорологическими условиями.
3.4. Корреляционно-регрессионный анализ для определения степени влияния внесения удобрений на урожайность.
3.5. Корреляционно-регрессионный анализ для определения степени влияния метеорологических условий и агротехники на урожайность.
3.6. Исчисление показателей колеблемости (устойчивости) урожайности во времени.
3.7. Составление картограммы распределения урожайности по территории области за 2000 год.
3.8. Анализ динамики урожайности.
Выводы и предложения.
Список литературы.
Уточним
расчеты, рассчитав коэффициент
Фехнера между двумя
Коэффициент
Фехнера строится на сравнении поведения
отклонений отдельных вариантов от своей
средней величины по каждому признаку.
При этом принимается во внимание не величина
самих отклонений, а их знаки. Найдя отклонения
от средней в каждом ряду, сравнивают знаки
и подсчитывают число совпадений и несовпадений
знаков. Если совпадения знаков обозначить
символом С, а несовпадения – Н,
то коэффициент Фехнера можно записать
так:
Кф=(åС-åН)/(åС+åН).
Построим необходимую для расчетов таблицу.
Расчет коэффициента Фехнера.
Урожайность зерновых (x) | Внесение минеральных
удобрений на 1 га
(y) |
x-xc | y-yc |
3,0 | 7 | - | - |
9,3 | 9 | - | + |
10,6 | 8 | + | - |
11,2 | 10 | + | + |
11,2 | 10 | + | + |
12,5 | 7 | + | - |
13,0 | 7 | + | - |
Xc=10,1 | Yc=8,3 |
Число совпадений знаков – 3, число несовпадений – 4. отсюда коэффициент Фехнера
Кф=(3
– 4)/(3 + 4)= - 0,2.
Судя
по значению коэффициента, можно сделать
вывод о малой степени
Проведя
аналогичным образом расчет коэффициента
Фехнера по влиянию внесения органических
удобрений на урожайность, получаем значение
0,2, что подтверждает правильность сделанных
ранее расчетов и вывода. Таким образом,
на урожайность зерновых внесение удобрений
не оказывает большого влияния.
3.3.
Группировка лет,
отличающихся
Наиболее
простым приемом определения
эффекта изменения количества осадков,
температуры и т.д. является объединение
лет, обладающих близкими уровнями таких
признаков, в соответствующие группы с
последующим сравнением средних уровней
урожайности в этих группах.
Приведем таблицу с соответствующими данными Тверской области:
Урожайность зерновых (ц с 1 га) в хозяйствах Тверской области в зависимости от весенних и зимних осадков.
Пределы осадков (интервалы группировки), мм | Число лет | Среднее количество осадков, мм | Урожайность зерновых, ц с 1 га |
Группировка по количеству весенних (апрель-июнь) осадков | |||
49-118 | 3 | 84 | 9,3 |
119-187 | 4 | 178 | 11,8 |
188-257 | 3 | 223 | 11,6 |
Группировка по количеству зимних (ноябрь-март) осадков | |||
155-200 | 6 | 179 | 12,4 |
201-245 | 2 | 213 | 6,15 |
246-290 | 2 | 286 | 11,6 |
Группировка
показывает прямую зависимость между
средним количеством осадков
в группе и урожайностью зерновых.
Но в то же время, зависимость эта не
сильная, так как на урожайность влияет
множество различных факторов, а не только
погодные условия. Этот показатель достаточно
сложен в изучении и требует дополнительных
расчетов. Для установления более точной
зависимости воспользуемся корреляционно-регрессионным
анализом, который будет рассмотрен ниже
в пункте 3.5.
3.4.Корреляционно-
Для
более глубокого исследования взаимосвязи
социально экономических
РКА заключается в построении и анализе экономико-математической модели в виде уравнения регрессии (корреляционной связи), выражающего зависимость явлений от определяющих его факторов.
РКА состоит из следующих этапов :
Подобное деление на этапы весьма условно, так как отдельные стадии тесно связаны между собой и нередко, результат полученный на одном этапе, позволяет дополнить , скорректировать выводы более ранних стадий РКА.
Основным и обязательным условием корректности применения РКА является однородность исходной статистической совокупности. Так, например если, изучается зависимость урожайности определенной сельскохозяйственной культуры от количества внесенных удобрений, очень важно, чтобы совокупность колхозов была однородна по климатическим условиям, почвенным зонам, специализации и т.п., различие которых оказывает влияние на величину урожайности.
Регрессионно – корреляционные модели могут быть использованы для решения различных задач: для анализа уровней социально – экономических явлений и процессов, например для анализа хозяйственной деятельности предприятия и вскрытия резервов, для прогнозирования и различных плановых расчетов.
Использование моделей позволяет значительно расширить возможности анализа, в частности анализа хозяйственной деятельности предприятий.
Рассмотрим расчет параметров для линейной парной регрессии.
При парной прямолинейной регрессии, увеличение факторного признака влечет за собой равномерное увеличение или снижение результативного признака. Для того чтобы установить аналитически форму связи необходимо пользоваться методами аналитических группировок, сравнения параллельных рядов и наиболее эффективным графическим методом.
Если связь прямолинейная, то аналитически такая связь записывается уравнением прямой yx=a0+a1x. Нужно иметь в виду, уравнение регрессии правильно выражает лишь при условии независимости коэфициентов a0 и a1 от факторного признака x либо такой незначительной зависимости, которой можно пренебречь.
Для нахождения параметров a0 и a1 строится система нормальных уравнений.
a0n + a1∑ x =∑y
a0∑ x + a1∑ x 2=∑y x
где a0 и a1 – неизвестные параметры уравнения;
x – внесение удобрений на 1 га;
y – урожайность с 1га;
n – количество лет исследования.
Найдем
значение a0
из первого уравнения:
a0=(70,8 - 58a1)/ 7
Подставим
во второе уравнение:
(10,11-8,28 a1)* 58 +492a1=592
11,76 a1=5,62
a1=0,47
Найдем a0 подставив a1 в
1 уравнение:
7a0 + 58*0,47 =70,8
a0=(70,8-27,26)/7
a0=6,22
Подставим
значения в уравнение прямой:
yx=6,22+0,47x
Таблица 11.
Расчетная
таблица за 7 лет.
Годы | Урожайность, ц с 1 га Y | Внесено удобрений на га посева, кг X | X2 | XY |
2003 | 11,2 | 10 | 100 | 112 |
2004 | 13,0 | 7 | 49 | 91 |
2005 | 11,2 | 10 | 100 | 112 |
2006 | 9,3 | 9 | 81 | 83,7 |
2007 | 3,0 | 7 | 49 | 21 |
2008 | 10,6 | 8 | 64 | 84,8 |
2009 | 12,5 | 7 | 49 | 87,5 |
Итого | 70,8 | 58 | 492 | 592 |
После проведенных расчетов, приходим к выводу об изменении урожайности в зависимости то количества внесенных удобрений. Это более наглядно показано на нижеприведенном рис. 2. Чем больше вносилось удобрений под зерновые, тем выше была их урожайность.
Для нахождения параметров а0 и а1 при линейной зависимости могут быть предложены готовые формулы.
Информация о работе Экономико-статистический анализ производства зерна