Автор: Пользователь скрыл имя, 10 Марта 2012 в 10:13, курсовая работа
Цель работы: выявить характерные особенности обучения элементам алгебры в начальной школе.
Задачи исследования:
1) рассмотрение общетеоретических аспектов введения в начальной школе алгебраических понятий величины и числа;
2) изучение конкретной методики обучения этим понятиям в начальной школе;
Введение 3
Глава I. Общетеоретические аспекты изучения алгебраического материала в начальной школе
1.1 Опыт введения элементов алгебры в начальной школе 6
1.2 Психологические основы введения алгебраических понятий
в начальной школе 10
1.3 Основные алгебраические понятия в начальном курсе математики 18
Глава II. Методические рекомендации к изучению алгебраического материала в начальной школе
2.1 Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений………………………………….23
2.2 Методические рекомендации изучения алгебраического материала в начальной школе ………………………………………………………………..30
2.3 Сравнительный анализ изучения элементов алгебры в различных УМК.36
Заключение 42
Cписок литературы 45
Возьмем тему «Порядок выполнения действий в выражениях». Ориентируясь на материалы по математике для второго класса. Первый урок проходит так. Сначала детям предлагаются различные выражения и им необходимо определить количество действий в них, наличие или отсутствие скобок, а так же те действия, которые необходимо выполнить в данных выражениях: 72 – ( 9- 3) – 6; 72 – 9 – 3 – 6 + 12; 72 – 9 – 3 – ( 6+ 12).
Дети сравнивают первое и второе выражения, отмечают, что в первом есть действия (его нужно выполнить первым), в первом выражении нужно выполнить три действия, а во втором – 4. Некоторые отмечают, что во втором выражении добавляется число 12. Второе выражение похоже на третье, только в третьем есть скобки.
Дети говорят, что в данных выражениях отсутствуют такие действия, как умножение и деление.
Для закрепления правил, выполняют задания. По какому признаку записаны выражения в каждом столбике?
29 – 8 + 24 72 : 9 · 3
32 + 9 – 7 + 14 48 : 6 · 7 : 8
64 – 7 + 16 – 8 27 : 3 · 2 : 6 · 9
Только после этого ставится вычислительная задача.
На доске записывают выражение 68 – 7 · 8 + 63 : 9. Дети расставляют порядок действий: 68 – 7 · 8 + 63 : 9. Вычисления выполняют устно. Они решают первое действие 7 · 8 = 56. Учитель берет карточку с числом 56 и закрывает ею выражение 7 · 8, получается запись: 68 – 56 + 63 : 9. И так пока не получится запись: 12 + 7.
После того как учащиеся научатся соотносить то или иное выражение с соответствующим правилам, предлагают такие задания: подумайте, какие знаки действий можно поставить вместо звездочек: o * o * o.
Дети спрашивают «А какой порядок действий?» Учитель выставляет порядок действий: o * o * o. Предлагают разные варианты: o * o * o
+ - , - +, · :, : · и т. д.
Далее детям предлагается выполнить работу самостоятельно. Они придумывают различные примеры такого типа. Затем схемы усложняются: добавляются числа, скобки, изменяется порядок действий. Особенности этих заданий состоит в том, что они активизируют творческую активность самого учителя.
Уравнения.
Нужны ли уравнения маленьким детям? Легко ли понять пример, когда ответ прячется за таинственным «х», который и прочесть-то не все могут правильно, то ли «икс», то ли «ха». Решение задач с помощью уравнений таинственно и интересно, а сокрытие тайн для любознательного человека вредно. Поэтому знакомство с уравнениями надо начинать с первого класса. И провести его можно следующим образом.
Начнем с фигурок, которые дети умеют складывать и строить из них. На доске нарисованы две фигуры. Что получится при их сложение? o + ∆ =
Дети получают дом, в котором
квадрат и треугольник
А теперь дети сами сочиняют и решают уравнения. Зная целое и части, можно легко действовать с числами.
Х - 2 = 7 5 – х = 3
Начинают с того, что определяют, где целое, и подчеркивают его. Ведь отнимать можно только от целого.
Х - 2 = 7 5 – х = 3
Из этих уравнений только в первом мы ищем целое. В двух других – части.
Х = 7 + 2 х = 5 –3 х = 9 - 6
Х = 9 х =2 х = 3
Уравнение помогает узнать, верно ли произведены вычисления, если вместо х подставить свою находку – число.
Х - 2 = 7 5 – х
= 3
9 – 2 = 7 5 – 2 = 3 6 + 3 = 9
Таким образом, для того что бы решить уравнение нужно:
а. Отметить целое;
б. Найти решение;
в. Записать корень уравнения;
г. Сделать проверку – подставить найденное число в первую сторону и убедиться, что конечные числа совпадают.
Если что-то не так, то нужно проверить, где поторопился. Это тоже важное умение – найти у себя ошибку и исправить ее.
Методика работы над уравнением.
В соответствии с действующей программой в первом классе, рассматриваются простейшие уравнения вида: х + 3 = 7; 4 + х = 9; х – 2 = 6; 5 – х = 3.
Чтобы осознавать те изменения, которые произошли в методике обучения решению уравнений, остановимся сначала на той методике, которой учителя пользовались ранее.
Прежде всего знакомство с уравнениями каждого вида разделено во времени. До четвертой четверти учебного года учащиеся решали только уравнения на нахождение неизвестного слагаемого. В основе решения этого вида уравнений лежало усвоение соответствующей терминологии (сумма, слагаемые) и правила нахождения неизвестного слагаемого по сумме двух слагаемых и одному из них.
Никакого определения уравнениям не дается, однако учащихся полезно научить узнавать уравнения. Можно, например, предложить найти среди записей уравнения и подчеркнуть их: х + 3 = 5; 5 > 3; 3 + х = 7; 9 + 1 = 10; 10 –х=8.
При знакомстве с уравнением можно выделить три этапа:
Первый этап начинается на уроках ознакомления с числами от 1 до 10 и включает следующие виды упражнений:
Второй этап – это знакомство с буквой х. Третий этап – учатся решать уравнения на основе знания связи между компонентами и результатами действия сложения и вычитания. Задание: реши примеры.
6 + 4 = 10 7 + 2 = o
10 – 6 = o 9 - o = o
10 – 4 = o o - o = o
Следует отметить, что этот
подход создает более благоприятные
условия для осуществления
Как известно, при изучении математики в 5-м классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Это повторение практически во всех существующих учебниках занимает 1,5 учебной четверти. Такая ситуация сложилась неслучайно. Ее причина – недовольство учителей математики средней школы подготовкой выпускников начальной школы. В чем же причина такого положения? Для этого были проанализированы учебники М.И. Моро, Л.Г. Петерсон, В.В. Давыдова и И.И. Аргинской ([12], [5], [14], [15], [2]).
Анализ этих учебников выявил несколько
негативных моментов, в большей или
меньшей степени присутствующих
в каждом из них и отрицательно
влияющих на дальнейшее обучение. Прежде
всего это то, что усвоение материала
в них в большей мере основано
на заучивании. Ярким примером этого
служит заучивание таблицы умножения.
В начальной школе ее запоминанию
уделяется много сил и времени.
Но за время летних каникул дети
ее забывают. Причина такого быстрого
забывания в механическом заучивании.
Исследования Л.С. Выготского показали,
что осмысленное запоминание
гораздо более эффективно, чем
механическое, а проведенные впоследствии
эксперименты убедительно доказывают,
что материал попадает в долговременную
память, только если он запомнен в результате
работы, соответствующей этому
Способ эффективного усвоения таблицы умножения был найден еще в 50-х годах. Он состоит в организации определенной системы упражнений, выполняя которые, дети сами конструируют таблицу умножения. Однако не в одном из рассмотренных учебников этот способ не реализован.
Другим негативным моментом, влияющим на дальнейшее обучение, является то, что во многих случаях изложение материала в учебниках математики начальной школы построено таким образом, что в дальнейшем детей придется переучивать, а это, как известно, гораздо труднее, чем учить. Применительно к изучению алгебраического материала примером может служить решение уравнений в начальной школе. Во всех учебниках решение уравнений основано на правилах нахождения неизвестных компонентов действий.
Несколько иначе это сделано лишь в учебнике Л.Г. Петерсон, где, например, решение уравнений на умножение и деление строится на соотнесении компонентов уравнения со сторонами и площадью прямоугольника и в итоге также сводится к правилам, но это правила нахождения стороны или площади прямоугольника. Между тем, начиная с 6-го класса детей учат совершенно другому принципу решения уравнений, основанному на применении тождественных преобразований. Такая необходимость переучивания приводит к тому, что решение уравнений является достаточно сложным моментом для большинства детей.
Анализируя учебники, мы столкнулись
еще и с тем, что при изложении
материала в них зачастую имеет
место искажение понятий. Например,
формулировка многих определений дается
в виде импликаций, тогда как из
математической логики известно, что
любое определение – это
Другим примером неправильного формирования понятий является работа с отношением буквенного равенства. Например, правила умножения числа на единицу и числа на нуль во всех учебниках даются в буквенном виде: а х 1 = а, а х 0 = 0. Отношение равенства, как известно, является симметричным, а следовательно, подобная запись предусматривает не только то, что при умножении на 1 получается то же число, но и то, что любое число можно представить как произведение этого числа и единицы. Однако словесная формулировка, предложенная в учебниках после буквенной записи, говорит только о первой возможности. Упражнения по этой теме также направлены только на отработку замены произведения числа и единицы этим числом. Все это приводит не только к тому, что предметом сознания детей не становится очень важный момент: любое число можно записать в виде произведения, – что в алгебре при работе с многочленами вызовет соответствующие трудности, но и к тому, что дети в принципе не умеют правильно работать с отношением равенства. К примеру, при работе с формулой разность квадратов дети, как правило, справляются с заданием разложить разность квадратов на множители. Однако те задания, где требуется обратное действие, во многих случаях вызывают затруднения. Другой яркой иллюстрацией этой мысли служит работа с распределительным законом умножения относительно сложения. Здесь также, несмотря на буквенную запись закона, и его словесная формулировка, и система упражнений отрабатывают только умение открывать скобки. В результате этого вынесение общего множителя за скобки в дальнейшем будет вызывать значительные трудности.
Весьма часто в начальной школе, даже когда определение или правило сформулировано верно, обучение стимулирует опору не на них, а на нечто совершенно другое. Например, при изучении таблицы умножения на 2 во всех рассмотренных учебниках показан способ ее построения. В учебнике М.И. Моро это сделано так:
2 х 2 2 х 3 2 х 4 2 х 9 |
2 + 2 2 + 2 + 2 2 + 2 + 2 + 2 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 |
При таком способе работы дети очень быстро подметят закономерность получающегося числового ряда.
Уже после 3–4 равенств они перестанут
складывать двойки и начнут записывать
результат, основываясь на подмеченной
закономерности. Таким образом, способ
конструирования таблицы
Информация о работе Изучение алгебраического материала в начальном курсе математики