Автор: Пользователь скрыл имя, 10 Марта 2012 в 10:13, курсовая работа
Цель работы: выявить характерные особенности обучения элементам алгебры в начальной школе.
Задачи исследования:
1) рассмотрение общетеоретических аспектов введения в начальной школе алгебраических понятий величины и числа;
2) изучение конкретной методики обучения этим понятиям в начальной школе;
Введение 3
Глава I. Общетеоретические аспекты изучения алгебраического материала в начальной школе
1.1 Опыт введения элементов алгебры в начальной школе 6
1.2 Психологические основы введения алгебраических понятий
в начальной школе 10
1.3 Основные алгебраические понятия в начальном курсе математики 18
Глава II. Методические рекомендации к изучению алгебраического материала в начальной школе
2.1 Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений………………………………….23
2.2 Методические рекомендации изучения алгебраического материала в начальной школе ………………………………………………………………..30
2.3 Сравнительный анализ изучения элементов алгебры в различных УМК.36
Заключение 42
Cписок литературы 45
Затем переходят к сравнению двух выражений. Сравнить два выражения - значит, сравнить их значения. Например, надо сравнить суммы 6 + 4 и 6 + 3. Рассуждение: первая сумма равна 10, вторая – 9, 10 больше, чем 9, значит сумма чисел 6 и 4 больше, чем сумма чисел 6 и 3.
6 + 4 > 6 +3
10> 9
Так же в
первом классе осуществляется
знакомство с записью и
Например, продолжи
запись: 76 – (20 + 4) = 26 – 20… Кроме
этого, в первом классе
Неизвестно число появляется впервые уже в связи с решением примеров вида 1 + 1 = 2, которые решаются при изучении нумерации в пределах десяти. В этом примере два известных числа 1 и 1, а третье число, которое получится, надо найти. Число которое требуется найти, называют неизвестным.[13]
Постепенно задания усложняются. Так, детям предлагается, пользуясь рисунком, имеющимся в учебнике, составить пример, в котором надо прибавить 1: o + 1 = o.
В рассмотренных примерах неизвестным числом являлся результат действия. В дальнейшем дети встречаются и с такими случаями, когда неизвестным оказывается один из компонентов действия. Например, спишите пример, заполняя пропуск: 3 + o = 5.
Далее, изучение выражений с переменными, равенств и неравенств, уравнений продолжается во втором классе.
Здесь дети знакомятся с терминами «равенство» и «неравенство». Учащимся предлагается проверить, верны ли записи (даны два столбика равенств и неравенств). Учитель поясняет, что, если между выражениями стоит знак равно, - это равенство, а если знак больше или меньше это неравенство. Равенства и неравенства бывают верными и неверными. Учащиеся выбирают верные равенства и верные неравенства из предложенных. Затем решают большое количество заданий такого типа на закрепление.
Так же во втором классе дети знакомятся с темой «Порядок действий» в сложных выражениях. Формулируют правило: если в выражении без скобок есть только сложение и вычитание или умножение и деление, то они выполняются по порядку слева направо. Учитель обращает внимание детей на то, что при не соблюдении этих правил получатся не верное равенство.
Затем изучается порядок действий в выражении без скобок, в которых есть умножение и деление, сложение и вычитание: в выражениях без скобок умножение и деления выполняются раньше, чем сложение и вычитание.
После этого изучается правило порядка действий в выражениях со скобками, причем в скобках одно действие. Знакомятся с такими тождественными преобразованиями как умножение и деление суммы на число.
Вводится новое понятие, выражение с переменной. В подготовительной работе нужно повторить название чисел в математических выражениях: «сумма чисел», «разность чисел», «произведение чисел», а так же зависимость между компонентами и результатом действий.
Хорошим упражнением для подготовки к введению буквенной символики являются задачи с пропущенными числами.
В начале вводятся выражения с одно переменной. Для этого можно использовать пособие – прямоугольник с вырезанным «окошком» и продвижной лентой. На ленте записаны числа, например, 2, 6, 8, 15, а на картоне за «окошком» записано +8. Учитель передвигает ленту, а дети называют и записывают соответствующие выражения: 2 + 8, 6 + 8 и т. д. Учитель сообщает, что в математике вместо «окошка» записывают латинские буквы. Учитель объясняет: «Запишем вместо «окошка», например, букву с, тогда получим выражение с + 8, которое читают так: «сумма чисел с и 8». Найдем значение этой суммы , подставляя значения записанные на этой ленте ( учитель передвигает ленту, а дети записывают на доске и в тетрадях выражение: с + 8, с = 2, 2 + 8 = 10; с = 6, 6 + 8 = 14 и т. д.»[12]
Числа 2, 6 , 8, 15 - это обозначения буквы с, а числа 10, 14 … - это значение выражения с + 8 приданных значениях буквы.
Можно ли букве с придать другие значения? Назовите их. Дети называют несколько значений, записывают числовые выражения и находят их значения. Учитель замечает, что букве с можно придать очень много различных значений.
Для ознакомления с выражениями с двумя переменными можно использовать специальное пособие - прямоугольник с двумя «окошечками» и провести работу, аналогичную той, что при введении выражения с одной. Начать можно и с рассмотрения простой задачи, например, такой:
«На одной полке 3 книги, а на другой – 5 книг. Сколько всего книг на этих полках?»
Дети знают, что
такие задачи решаются
На доске запись:
На 1 полке На 2 полке Всего
3 кн. 5 кн. (3 + 5) кн.
6 кн. 4 кн. (6+4) кн.
а кн. в кн. (а + в) кн.
Затем в задаче меняются числовые данные: «На одной полке 6 книг, а на другой - 4». Вопрос тот же, запись данных и решение проводится по той же таблице.
С целью закрепления знаний приобретенных при первом знакомстве с буквенными выражениями, выполняются упражнения, связанные с вычислением значений данного выражения при заданных значениях букв. Полезны и упражнения на заполнение таблиц, где компоненты действий обозначен буквами.
И еще один элемент алгебры, который дети изучают во втором классе – это уравнения.
При введении уравнений они решаются подбором используя знания состава чисел, табличных случаев сложения, вычитания умножения и деления. После решения нескольких примеров подбором учитель дает уравнение х + 28 = 40, предлагает прочесть: первое слагаемое неизвестно, второе – 28, сумма - 40, надо найти первое слагаемое. Дети говорят правило нахождения неизвестного слагаемого: чтобы найти первое слагаемое, надо из суммы 40 вычесть известное слагаемое – 28.[12]
Вычисляем: 40 –28 = 12, т. е. х = 12.
Проверяем: 12 + 28 = 40, значит уравнение решено правильно. Запись на доске и в тетрадях:
х + 28 = 40 Проверка:
х = 40 - 28 12 + 28 = 40
х = 12 40 = 40.
Затем аналогично изучаются уравнения видов:
Х – 5 = 27 – нахождение неизвестного уменьшаемого;
32 – х = 8 – нахождение неизвестного вычитаемого;
14 · х = 28 – нахождение неизвестного множителя;
х : 6 = 12 – нахождение неизвестного делимого;
48 : х = 4 – нахождение неизвестного делителя.
Овладение понятием «уравнение» способствует и решение задач способом составления уравнения. Необходимым требованием для этого является умение составлять выражения по их условиям.
В третьем классе решаются задачи с помощью составления уравнения, в которых надо найти неизвестный компонент действия.
Для решения задачи с помощью уравнения обозначают буквой искомое число, выделяют в условии задачи связи, которые позволяют составить равенство, содержащее неизвестное, записывают его. Полученное уравнение решают, используя знания, связи между компонентами и результатом действия. Затем дается ответ на вопрос задачи.
Так же с помощью уравнений
решаются задачи на нахождение одной
из сторон прямоугольника по известным
площади и длине смежной
Задачи на составление уравнений решаются систематически – это хорошее упражнение на отработку понятия уравнения.
Кроме решения уравнений учащиеся в третьем классе продолжают работу над выражениями с переменной, а так же с изучением порядка действий.
Таким образом учащиеся проверяют знания свойств арифметических действий в таких упражнениях: при каких значениях букв верны следующие равенства: 36 · в = в; а · а = а; с + с = с; 10 · с = 10; 49 · а = 0; в · 0 = 0; 12 · а = а · 12; в + в = в.
В данном уравнении буквенная символика способствует повышению уровня обобщения знаний и готовит их к изучению алгебры.
И новым в вопросе о порядке действий в выражениях является изучение правила порядка действий в выражениях со скобками, причем в скобках несколько действий.
Таким образом можно сделать вывод о том, что изучение числовых выражений с переменной, числовых равенств и неравенств, уравнений продолжается на протяжении всех трех лет начального обучения в школе.
2.2 Методические
рекомендации изучения
Учебные задания, выполняемые на уроках математики, часто определяют однообразие мыслительной деятельности учащихся, реализуя лишь обучающие цели – закрепление знаний, формирование умений и навыков. Это отрицательно сказывается на развитие учащихся и на дальнейшем усвоении учебного материала. В частности, имеются ввиду учебные задания на нахождение значений числовых выражений, то есть решение примеров из учебников.
Урок математики проходит с применением различных творческих заданий . Детям необходимо составить неравенство. На доске записана левая часть неравенства 72 : 6 и знак сравнения «>». Подумайте, какое выражение надо записать в правой части неравенства, чтобы значение левого выражения было в четыре раза больше правого? 72 : 6 > 72 : o. Предлагается делитель 24 [15].
- Подумаем, правильно ли выполнено задание. Попробуем рассуждать не вычисляя.
- Делитель в правом выражении шесть. Чтобы первое выражение в четыре раза больше по своему значению, чем второе, надо чтобы делитель во втором выражении был в четыре раза больше, чем шесть, то есть 24. Делитель в первом выражении меньше в четыре раза, значит, частное будет больше в четыре раза.
- Теперь проверим рассуждение вычислением.
В эту работу следует активно включать слабых учащихся. Затем дети самостоятельно составляют неравенства. При самостоятельном выполнении слабым учащимся предлагаются карточки с методической помощью:
72 : 2 > 72 : 6
72 : 3 > 72 : o
72 : 4 > o : o
72 : o > o : o
Главное, чтобы учитель осознавал психолого-педагогическую основу учебных заданий – развитие учащихся.
Порядок действий.
При объяснение нового применяется таблица «порядок действий» помогает детям быстрее и более прочно усвоить этот новый для них материал. Таблица является как бы моделью темы.
- О чем задумался Незнайка и зачем к нему прилетели птички?
- Уставшие и голодные птички должны свить себе гнездышко. Незнайка задумался как помочь им. Ему на помощь пришли сами же птички: «Сначала давайте соберем зернышки, поклюем их, а потом, ставь сильными, полетим за веточками для гнездышка.»
- А как на таблице изображены зернышки и веточки? Какими знаками они обозначены? Незнайка запомнил порядок работы, который ему предложили птички, и решил попробовать выполнить примеры на порядок действий. Давайте поможем ему. Разбирают примеры: 30 – 2 · 4; 20 : 4 + 9.
Таким образом дети самостоятельно изучают тему, а учитель руководит их мыслительной деятельностью. На первом этапе, главное – научить разбираться в порядке действий.
На следующем этапе предлагаются примеры в три и четыре действия. Затем появляются примеры с использованием скобок и в помощь предлагается таблица:
1 - 2 +
o o + o = o
o o - o = o 1 +
Выполняй по очереди 2 –
Спеши на помощь
(o - o) + o = o
o - ( o + o) = o
Таблица образно напоминает, что в первую очередь надо выполнять действия в скобках.
Как добиться твердого усвоения правил порядка выполнения действий? На доске записан пример: 96 – 28 : 4 + 36 · 2. Определить порядок действий только над действиями деления и умножения: 96 – 28 : 4 + 36 · 2. Выполняем их по порядку: 1) 28 : 4 = 7; 2) 36 · 2 = 72. Затем переписываем числовое выражение в упрощенном виде: 96 – 7 + 72. Снова обозначаем порядок действий: 96 – 7 + 72. Заканчиваем его решение: 3) 96 – 7= 89; 4) 89 + 72 = 161.
Для выработки твердых навыков, правильных и быстрых устных вычислений на каждом уроке выделяется 5 – 10 минут для проведения тренеровочных упражнений. Но чтобы не пропадал интерес к устному счету можно использовать игры.
На внутренней стороне доски вешаются кармашки с надписью «Устно», «Работай сам». В первый кармашек кладутся карточки на которых записаны примеры для устного счета, в другой кармашек – примеры для самостоятельной работы на уроке. Детям очень нравится игра «В полет на воздушном шаре». Изображается воздушный шар, в нем герои из детских книг. Внизу прикреплен почтовый ящик – кармашек с прорезью. На уроке за отличный ответ ученик получает билет – карточку на обратной стороне которой пишет свою фамилию и на перемене опускает в почтовый ящик. Полет может длиться несколько дней, а когда будет окончен, учитель вместе с учащимися вскрывает почтовый ящик, подводит итоги и объявляет победителя. В качестве поощрения победитель может составить создания для устного счета и даже проводить его.
Информация о работе Изучение алгебраического материала в начальном курсе математики