Автор: Пользователь скрыл имя, 02 Января 2012 в 08:31, курсовая работа
Адаптивная модель прогнозирования - самонастраивающаяся рекуррентная модель, способная отражать изменяющиеся во времени динамические свойства временного ряда и учитывать информационную ценность его членов.
Преимущество адаптивных моделей в том, что они отражают динамические свойства временного ряда и учитывают информационную ценность его ретроспективных членов и поэтому способны давать достаточно точные оценки будущих значений. Такие модели предназначаются прежде всего для краткосрочного прогнозирования. Они позволяют достичь компромисса между требованием статистических подходов к увеличению объемов выборки для получения более точных оценок и требованием гомогенности (однородности) данных, ибо чем больше период наблюдений, тем выше вероятность того, что исследуемый процесс или объект претерпел коренные изменения.
Содержание 2
Введение 3
§1. Трендовые модели на основе кривых роста. 4
Простая экспонента 6
Модифицированная экспонента 6
Кривая Гомперца 7
§2. Оценка адекватности и точности трендовых моделей. 13
Проверка случайности колебаний уровней остаточной последовательности 14
Проверка соответствия распределения случайной компоненты 16
нормальному закону распределения 16
Проверка равенства математического ожидания случайной компоненты равной нулю 18
Проверка независимости значений уровней случайной компоненты 18
§3. Прогнозирование экономической динамики на основе трендовых моделей. 23
§4. Адаптивные модели прогнозирования 31
Заключение. 44
Список используемой литературы. 45
8) верификация прогноза.
Порядок реализации первых шести этапов из перечисленных описан в предыдущих параграфах данной главы. Рассмотрим более подробно два заключительных этапа.
Прогноз на основании трендовых моделей (кривых роста) содержит два элемента: точечный и интервальный прогнозы. Точечный прогноз — это прогноз, которым называется единственное значение прогнозируемого показателя. Это значение определяется подстановкой в уравнение выбранной кривой роста величины времени t, соответствующей периоду упреждения:
t = n + 1; t = n + 2 и т. д. Такой прогноз называется точечным, так как на графике его можно изобразить в виде точки.
Очевидно, что точное совпадение фактических данных в будущем и прогностических точечных оценок маловероятно. Поэтому точечный прогноз должен сопровождаться двусторонними границами, т.е. указанием интервала значений, в котором с достаточной долей уверенности можно ожидать появления прогнозируемой величины. Установление такого интервала называется интервальным прогнозом.
Интервальный прогноз на базе трендовых моделей осуществляется путем расчета доверительного интервала — такого интервала, в котором с определенной вероятностью можно ожидать появления фактического значения прогнозируемого экономического показателя. Расчет доверительных интервалов при прогнозировании с использованием кривых роста опирается на выводы и формулы теории регрессий. Перенесение выводов теории регрессий на временные экономические ряды не совсем правомерно, так как динамические ряды, как выше уже отмечали, отличаются от статистических совокупностей. Поэтому к оцениванию доверительных интервалов для кривых роста следует подходить с известной долей осторожности.
Методы,
разработанные для
Стандартная (средняя квадратическая) ошибка оценки прогнозируемого показателя определяется по формуле:
где yt — фактическое значение уровня временного ряда для времени t; -расчетная оценка соответствующего показателя по модели (например, по уравнению кривой роста); n —количество уровней в исходном ряду; k — число параметров модели.
В случае прямолинейного тренда для расчета доверительного интервала можно использовать аналогичную формулу для парной регрессии, таким образом, доверительный интервал прогноза Uу в этом случае будет иметь вид
где L — период упреждения; yn+L— точечный прогноз по модели на (n+L)-й момент времени; n — количество наблюдений во временном ряду; — стандартная ошибка оценки прогнозируемого показателя, рассчитанная по ранее приведенной формуле для числа параметров модели, равного двум;
ta — табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2.
Если выражение
обозначить
через К, то формула для доверительного
интервала примет вид
Значения величины К для оценки доверительных интервалов прогноза относительно линейного тренда табулированы. Фрагмент такой таблицы для уровня значимости α = 0,20 представлен для иллюстрации в табл. 4.
Таблица 4
Число уровней
в ряду (n) |
Период упреждения L | ||||
1 | 2 | 3 | 4 | 5 | |
7
10 13 15 |
1,932
1,692 1,581 1,536 |
2,106
1,774 1,629 1,572 |
2,300
1,865 1,682 1,611 |
2,510
1,964 1,738 1,653 |
2,733
2,069 1,799 1,697 |
Иногда
для расчета доверительных
Здесь t — порядковый номер уровня ряда (t = 1,2, ..., n); tL = n + L — время, для которого делается прогноз; t — время, соответствующее середин периода наблюдений для исходного ряда, например, t = (n+ 1):2; суммирование ведется по всем наблюдениям.
Эту формулу можно упростить, если, как часто делается на практике, перенести начало отсчета времени на середину периода наблюдений ( = 0):
Формула
для расчета доверительных
Аналогично
вычисляются доверительные
Таким образом, формулы расчета доверительного интервала для трендовых моделей разного класса различны, но каждая из них отражает динамический аспект прогнозирования, т.е. увеличение неопределенности прогнозируемого процесса с ростом периода упреждения проявляется в постоянном расширении доверительного интервала.
Несмотря на громоздкость некоторых формул, расчет точечных и интервальных прогнозов на основе трендовых моделей в форме кривых роста технически является достаточно простой процедурой. Однако не следует обольщаться технической простотой процедуры экстраполяции и пытаться заглянуть слишком далеко, это неизбежно приведет к грубым ошибкам. Оптимальная длина периода упреждения определяется отдельно для каждого экономического явления с учетом статистической колеблемости изучаемых данных на основе содержательного суждения о стабильности явления. Эта длина, как правило, не превышает для рядов годовых наблюдений одной трети объема данных, а для квартальных и месячных рядов — двух лет.
При выравнивании временных рядов с использованием кривых роста приходится решать вопрос о том, какой длины должен быть ряд, выбираемый для прогнозирования. Очевидно, что если период ряда экономической динамики слишком короткий, можно не обнаружить тенденцию его развития.
С другой стороны, очень длительный временной ряд может охватывать периоды с различными трендами и его описание с помощью одной кривой роста не даст положительных результатов. Поэтому рекомендуется поступать следующим образом. Если нет никаких соображений качественного порядка, следует брать возможно больший промежуток времени. Если развитие обнаруживает циклический характер, следует брать период от середины первого до середины последнего периода цикла. Если ряд охватывает периоды с разными трендами, лучше сократить ряд, отбросив наиболее ранние уровни, которые относятся к периоду с иной тенденцией развития.
При
экстраполяционном
Даже в тех случаях, когда прогноз не оправдался, нельзя категорически утверждать, что он был бесполезен, поскольку пользователь, если он хотя бы частично контролирует ход событий и может воздействовать на экономический процесс, может использовать прогнозную информацию желаемым для себя образом. Так, получив прогноз событий, определяющих нежелательное направление перспективного развития, пользователь может принять меры, чтобы прогноз не оправдался; такой прогноз называется самодеструктивным. Если прогноз предсказал ход событий, устраивающий пользователя, то он может использовать свои возможности для увеличения вероятности правильного прогноза; подобный прогноз называется саморегулирующим. Таким образом, показателем ценности прогноза является не только его достоверность, но и полезность для пользователей.
О точности прогноза принято судить по величине ошибки прогноза —разности между фактическим значением исследуемого показателя и его прогнозным значением. Очевидно, что определить указанную разность можно лишь в двух случаях: либо если период упреждения уже окончился и известно фактическое значение прогнозируемого показателя (известна его реализация), либо если прогнозирование осуществлялось для некоторого момента времени в прошлом, для которого известны фактические данные.
Во втором из названных случаев информация делится на две части. Часть, охватывающая более ранние данные, служит для оценивания параметров прогностической кривой роста, другая, более поздняя, рассматривается как реализация прогноза. Полученные таким образом ошибки прогноза в какой-то мере характеризуют точность применяемой методики прогнозирования.
Проверка точности одного прогноза недостаточна для оценки качества прогнозирования, так как она может быть результатом случайного совпадения. Наиболее простой мерой качества прогнозов при условии, что имеются данные об их реализации, является отношение числа случаев, когда фактическая реализация охватывалась интервальным прогнозом, к общему числу прогнозов. Данную меру качества прогнозов k можно вычислить по формуле
где р — число прогнозов, подтвержденных фактическими данными; q — число прогнозов, не подтвержденных фактическими данными.
Однако
в практической работе проблему качества
прогнозов чаще приходится решать, когда
период упреждения еще не закончился и
фактическое значение прогнозируемого
показателя неизвестно. В этом случае
более точной считается модель, дающая
более узкие доверительные интервалы
прогноза. На практике не всегда удается
сразу построить достаточно хорошую модель
прогнозирования, поэтому описанные в
данной главе этапы построения трендовых
моделей экономической динамики выполняются
неоднократно.
§4. Адаптивные модели прогнозирования.
При оценке параметров адаптивных моделей в отличие от рассматриваемых ранее моделей «кривых роста» наблюдениям (уровням ряда) присваиваются различные веса в зависимости от того, насколько сильным признается их влияние на текущий уровень. Это позволяет учитывать изменения в тенденции, а также любые колебания, в которых
прослеживается закономерность. Все адаптивные модели базируются на двух схемах: скользящего среднего (СС-модели) и авторегрессии (АР-модели).
Согласно схеме скользящего среднего, оценкой текущего уровня является взвешенное среднее всех предшествующих уровней, причем веса при наблюдениях убывают по мере удаления от последнего уровня, т. е. информационная ценность наблюдений признается тем большей, чем ближе они к концу интервала наблюдений. Такие модели хорошо отражают изменения, происходящие в тенденции, но в чистом виде не позволяют отражать колебания.
Информация о работе Адаптивные модели прогнозирования экономических процессов