Автор: Пользователь скрыл имя, 18 Ноября 2011 в 21:21, курсовая работа
Statistics are social science, which studies the quantitative side of the high-quality certain mass socio-economic phenomena and processes, their structure and distributing, placing in space, direction and speed of time-histories, tendencies and conformities to law of motion, closeness of intercommunications and interdepends.
The quantitative side of any public phenomenon is indissolubly related to his high-quality aspects, because a quantitative dimension does not exist without high-quality definiteness.
Entry.............................................................................................................................................4
1. An object, task of statistics, its organization, short history of development and connection, is with other sciences........................................................................................................................................ 5
1.1. An object, task of statistics and its connection, is with other sciences..................................5
1.2. Short history of development of statistics..............................................................................7
2. Statistical estimation of indexes of products of stock-raising and factors, that on it influence.......................................................................................................................................9
2.1. System of indexes of statistics of stock-raising and method of their calculation....................................................................................................................................9
2.2. Statistical groupings and their kinds....................................................................................11
2.3. Distributing rows and them graphic image..........................................................................15
2.4. Summarizing the indexes of distributing rows......................................................................21
2.5. Variation of signs and indexes of their measuring...............................................................29
2.6. Verification of accordance of distributing of frequencies of empiric row to distributing
Theoretical..................................................................................................................................36
2.7. Selective method....................................................................................................................37
3. Cross-correlation analysis of the productivity of sugar beets and factors, that it is formed...........................................................................................................................................40
3.1. Grade correlation..................................................................................................................40
3.2. Linear regression. Determination of parameters of connection and them economic interpretation.................................................................................................................................43
3.3. Measuring of intensity of correlation. Coefficient of simple correlation and his maintenance.................................................................................................................................. 48
3.4. Plural correlation...................................................................................................................50
Conclusions....................................................................................................................................56
List of the used literature...............................................................................................................57
Groups of economies are after the output of calves | Amount of economies | A middle level of output of calves is on groups | A middle level of yield is on groups |
І. 90 – 91,4 | 6 | 90,67 | 34,43 |
ІІ. 91,4 – 92,8 | 3 | 92 | 35,47 |
ІІІ.92,8 – 94,2 | 9 | 93,44 | 36,58 |
IV.94,2 – 95,6 | 5 | 95 | 37,24 |
V. 95,6 - 97 | 7 | 96,43 | 38,71 |
In all: | 30 | 467,54 | 182,43 |
Tables are given 4 testify to the presence of direct connection between the probed signs, that with the increase of output of calves the level of yield is increased.
With
the increase of level of output of calves in economies And group as
compared to economies ІV groups on 95,44% (
), the level of yield was increased on 92,45% (
).
2.3. Distributing rows and them graphic image
At the statistical grouping of information every group is characterized the system of indexes which have complete connection and interdependence with a groups sign. If the selected groups characterize the not system of indexes, but only by the amount of units which behave to every group, reach distributing rows.
A distributing row is grouping of units of aggregate on one sign. If an attributive sign is fixed in basis of distributing row, a row is named attributive. If a distributing row is formed on a quantitative sign, he is named variation.
The
variation rows of distributing consist of two elements - variants and
frequencies. Variants are name the separate values of групувальної
sign. Frequencies are numbers which show, how many times those
are or other variants in the row of distributing.
Table 5 A row is well-organized after the charges of forages on a cow c. of forage units
№ | № in initial data | Charges of forages are on a cow, ö of forage units |
1 | 20 | 35,4 |
2 | 30 | 36,6 |
3 | 5 | 36,7 |
4 | 12 | 37 |
5 | 17 | 37 |
6 | 27 | 37,1 |
7 | 10 | 37,4 |
8 | 25 | 37,5 |
9 | 7 | 37,6 |
10 | 14 | 37,7 |
11 | 24 | 37,8 |
12 | 2 | 37,9 |
13 | 8 | 38 |
14 | 15 | 38 |
15 | 19 | 38 |
16 | 18 | 38,5 |
17 | 3 | 39,5 |
18 | 21 | 39,7 |
19 | 23 | 39,8 |
20 | 16 | 40 |
21 | 9 | 40,2 |
22 | 1 | 40,4 |
23 | 22 | 40,6 |
24 | 26 | 41,2 |
25 | 6 | 41,3 |
26 | 13 | 41,5 |
27 | 29 | 42 |
28 | 4 | 42,3 |
29 | 28 | 43 |
30 | 11 | 43,1 |
Table 6 . An interval variation row of distributing after the charges of forages is on a cow
Charges of forages on a cow c.f.un. | Frequencies | Middle of interval | Frequency is accumulated |
35,4 – 36,94 | 3 | 36,17 | 3 |
36,94 – 38,48 | 12 | 37,71 | 15 |
38,48 – 40,02 | 5 | 39,25 | 20 |
40,02 – 41,56 | 6 | 40,79 | 26 |
41,56 – 43,1 | 4 | 42,33 | 30 |
Together | 30 | Х | Х |
Table 7. A row is well-organized after the output of calves on 100 cows
№ | № in initial data | An output of calves is on 100 cows, chairmen |
1 | 20 | 90 |
2 | 25 | 90 |
3 | 12 | 91 |
4 | 14 | 91 |
5 | 18 | 91 |
6 | 21 | 91 |
7 | 3 | 92 |
8 | 24 | 92 |
9 | 27 | 92 |
10 | 2 | 93 |
11 | 4 | 93 |
12 | 6 | 93 |
13 | 15 | 93 |
14 | 29 | 93 |
15 | 5 | 94 |
16 | 17 | 94 |
17 | 23 | 94 |
18 | 30 | 94 |
19 | 1 | 95 |
20 | 8 | 95 |
21 | 10 | 95 |
22 | 19 | 95 |
23 | 26 | 95 |
24 | 7 | 96 |
25 | 13 | 96 |
26 | 16 | 96 |
27 | 22 | 96 |
28 | 9 | 97 |
29 | 11 | 97 |
30 | 28 | 97 |
Table 8. An interval variation row of distributing is after the output of calves
An output of calves is on 100 cows, chairmen | Frequencies | Middle of interval | Frequency is accumulated |
90 – 91,4 | 6 | 90,7 | 6 |
91,4 – 92,8 | 3 | 92,1 | 9 |
92,8 –
94,2
|
9 | 93,5 | 18 |
94,2 – 95,6 | 5 | 94,9 | 23 |
95,6 - 97 | 7 | 96,3 | 30 |
Together | 30 | Х | Х |
Table 9. A row is well-organized after a yield on a cow
№ п/п | № in initial data | yield on a cow, с |
1 | 20 | |
2 | 27 | |
3 | 12 | |
4 | 14 | |
5 | 25 | |
6 | 30 | 35,2 |
7 | 5 | |
8 | 19 | |
9 | 2 | |
10 | 17 | |
11 | 10 | |
12 | 15 | |
13 | 24 | |
14 | 7 | |
15 | 8 | |
16 | 29 | |
17 | 4 | |
18 | 21 | |
19 | 23 | 37,8 |
20 | 18 | |
21 | 1 | |
22 | 6 | |
23 | 22 | |
24 | 28 | |
25 | 3 | |
26 | 11 | 38,6 |
27 | 16 | 39 |
28 | 13 | 39,4 |
29 | 26 | 39,4 |
30 | 9 | 41,2 |
Table 10. An interval variation row of distributing is after a yield on a cow
Yield on a cow, с | Frequencies | Middle of interval | Frequency accumulated |
31,3 – 33,28 | 3 | 32,29 | 3 |
33,28 – 35,26 | 3 | 34,27 | 6 |
35,26 – 37,24 | 8 | 36,25 | 14 |
37,24 – 39,22 | 13 | 38,23 | 27 |
39,22 – 41,2 | 3 | 40,21 | 30 |
Together | 30 | Х | Х |
Poligon
of distributing is built in the rectangular system of co-ordinates,
here on wasp of abscissas put aside variant, and on wasp of ordinates
is frequency. By the ground of distributing, graphicly represent discrete
variation rows.
For
the graphic image of interval variation rows more frequent utillize
histograms. The order of construction of this type of the graphs is
such: on wasp of abscissas variants put aside the intervals of values.
They are bases of rectangles the height of which (ordinate) is proportional
frequency of intervals.
At
the image of variation row with the accumulated frequencies the so-called
curve of sums turns out in the rectangular system of co-ordinates -
Kumulyatu. Kumulyatu apply at comparison of different variation rows,
and also in economic researches, in particular for the analysis of concentration
of production.
Like Kumulyatu in the rectangular system
of co-ordinates build Ogivu. A difference of the graph is only in that
on abscise an axis inflict story frequencies, and on a y-axis - value
variant.
2.4. Summarizing the indexes of distributing rows
In an order to know about distributing of indexes, there is a necessity of calculation of descriptions of statistical rows of distributing. Major description of variation row of distributing is an average.
An average in statistics is name summarizing description of aggregate of the of the same type phenomena from any variation sign, which shows the level of sign, counted on unit of aggregate. Together with the method of groupings averages in statistics are one of basic methods of working and analysis of mass data.
Average as category of statistics - it, from one side, an index, which represents objectively existent properties of the public phenomena which middle indexes can be calculated on the basis of, is real; and from the second - in it взаємознищуються individual divergences of many sizes of the same kind.
A
few types of averages are used in statistics.
All of them belong to the class of middle of degree, the general formula
of which has such kind:
,
If т = 1, middle arithmetic - ;
If
т = 2, middle quadratic -
;
If т = -1, middle harmonious - ;
If m=0, middle geometrical - ,
Where К1, К2, ….Кn – chain coefficients of dynamics.
Except for the averages of degree, descriptive descriptions of row of distributing of sign are used in statistics — Moda (Мо) and Mediana (Ме).
An arithmetic average is widely used in statistics. It is the most widespread type of averages. The middle arithmetic is determined as attitude of sum of separate values of sign toward the amount of units of aggregate. Distinguish middle arithmetic simple and weighed. Middle the arithmetic simple is applied then, when the individual values of avarage sign are known in every unit of aggregate. Middle arithmetic the weighed is calculated, when the separate values of average sign repeat oneself in the probed aggregate different number one times, and weighing in this case conduct after frequencies which show how many times a certain variant repeats oneself. A geometrical average is utillized for determination of middle rates of dynamics of the meaningful phenomena. A quadratic average is used at the study of connections between the probed phenomena and their reasons by the method of correlation analysis but other
Will
apply theoretical material to our project task and will expect simple
averages.
Table 11. Initial and calculation information is for the calculation of simple averages
№ п/п | Y | X1 | X2 | 1/Y | Y2 | 1/ X1 | X12 | 1/ X2 | X22 |
1 | 38,1 | 40,4 | 95 | 0,0262 | 1451,61 | 0,0248 | 1632,2 | 0,0105 | 9025 |
2 | 35,9 | 37,9 | 93 | 0,0279 | 1288,81 | 0,0264 | 1436,4 | 0,0108 | 8649 |
3 | 38,4 | 39,5 | 92 | 0,0260 | 1474,56 | 0,0253 | 1560,3 | 0,0109 | 8464 |
4 | 37,5 | 42,3 | 93 | 0,0267 | 1406,25 | 0,0236 | 1789,3 | 0,0108 | 8649 |
5 | 35,4 | 36,7 | 94 | 0,0282 | 1253,16 | 0,0272 | 1346,9 | 0,0106 | 8836 |
6 | 38,2 | 41,3 | 93 | 0,0262 | 1459,24 | 0,0242 | 1705,7 | 0,0108 | 8649 |
7 | 36,3 | 37,6 | 96 | 0,0275 | 1317,69 | 0,0266 | 1413,8 | 0,0104 | 9216 |
8 | 37,3 | 38 | 95 | 0,0268 | 1391,29 | 0,0263 | 1444 | 0,0105 | 9025 |
9 | 41,2 | 40,2 | 97 | 0,0243 | 1697,44 | 0,0249 | 1616 | 0,0103 | 9409 |
10 | 36 | 37,4 | 95 | 0,0278 | 1296 | 0,0267 | 1398,8 | 0,0105 | 9025 |
11 | 38,6 | 43,1 | 97 | 0,0259 | 1489,96 | 0,0232 | 1857,6 | 0,0103 | 9409 |
12 | 32,4 | 37 | 91 | 0,0309 | 1049,76 | 0,0270 | 1369 | 0,0110 | 8281 |
13 | 39,4 | 41,5 | 96 | 0,0254 | 1552,36 | 0,0241 | 1722,3 | 0,0104 | 9216 |
14 | 33,7 | 37,7 | 91 | 0,0297 | 1135,69 | 0,0265 | 1421,3 | 0,0110 | 8281 |
15 | 36 | 38 | 93 | 0,0278 | 1296 | 0,0263 | 1444 | 0,0108 | 8649 |
16 | 39 | 40 | 96 | 0,0256 | 1521 | 0,0250 | 1600 | 0,0104 | 9216 |
17 | 35,9 | 37 | 94 | 0,0279 | 1288,81 | 0,0270 | 1369 | 0,0106 | 8836 |
18 | 37,9 | 38,5 | 91 | 0,0264 | 1436,41 | 0,0260 | 1482,3 | 0,0110 | 8281 |
19 | 35,4 | 38 | 95 | 0,0282 | 1253,16 | 0,0263 | 1444 | 0,0105 | 9025 |
20 | 31,3 | 35,4 | 90 | 0,0319 | 979,69 | 0,0282 | 1253,2 | 0,0111 | 8100 |
21 | 37,5 | 39,7 | 91 | 0,0267 | 1406,25 | 0,0252 | 1576,1 | 0,0110 | 8281 |
22 | 38,2 | 40,6 | 96 | 0,0262 | 1459,24 | 0,0246 | 1648,4 | 0,0104 | 9216 |
23 | 37,8 | 39,8 | 94 | 0,0265 | 1428,84 | 0,0251 | 1584 | 0,0106 | 8836 |
24 | 36 | 37,8 | 92 | 0,0278 | 1296 | 0,0265 | 1428,8 | 0,0109 | 8464 |
25 | 33,8 | 37,5 | 90 | 0,0296 | 1142,44 | 0,0267 | 1406,3 | 0,0111 | 8100 |
26 | 39,4 | 41,2 | 95 | 0,0254 | 1552,36 | 0,0243 | 1697,4 | 0,0105 | 9025 |
27 | 32 | 37,1 | 92 | 0,0313 | 1024 | 0,0270 | 1376,4 | 0,0109 | 8464 |
28 | 38,3 | 43 | 97 | 0,0261 | 1466,89 | 0,0233 | 1849 | 0,0103 | 9409 |
29 | 37,3 | 42 | 93 | 0,0268 | 1391,29 | 0,0238 | 1764 | 0,0108 | 8649 |
30 | 35,2 | 36,6 | 94 | 0,0284 | 1239,04 | 0,0273 | 1339,6 | 0,0106 | 8836 |
Together | 1099,4 | 1172,8 | 2811 | 0,8219 | 40445,2 | 0,7695 | 45976 | 0,3203 | 263521 |