Автор: Пользователь скрыл имя, 18 Сентября 2011 в 12:43, шпаргалка
ответы на 32 вопроса.
Шпоры по эконометрике.
№ 1. СПЕЦИФИКАЦИЯ МОДЕЛИ
Простая регрессия представляет собой регрессию между двумя переменными
—у и х, т.е. модель вида
, где у — результативный признак; х - признак-фактор.
Множественная регрессия представляет собой регрессию результативного
признака с двумя и большим числом факторов, т. е. модель вида
Спецификация модели - формулировка вида модели, исходя из
соответствующей теории связи между переменными. В уравнении регрессии
корреляционная по сути связь признаков представляется в виде функциональной
связи, выраженной соответствующей математической функцией.
где yj — фактическое значение результативного признака;
yxj -теоретическое значение результативного признака.
— случайная
величина, характеризующая отклонения реального значения результативного
признака от теоретического.
Случайная величина ε называется также возмущением. Она
включает влияние не учтенных в модели факторов, случайных ошибок и особенностей
измерения.
От правильно выбранной спецификации модели зависит величина случайных ошибок:
они тем меньше, чем в большей мере теоретические значения результативного
признака подходят
к фактическим данным у.
К ошибкам спецификации относятся неправильный выбор той или иной математической
функции для ,
и недоучет в
уравнении регрессии какого-
использование парной регрессии вместо множественной.
Ошибки выборки - исследователь чаще всего имеет дело с выборочными данными
при установлении закономерной связи между признаками.
Ошибки измерения практически сводят на нет все усилия по количественной
оценке связи между признаками. Основное внимание в эконометрических
исследованиях уделяется ошибкам спецификации модели.
В парной регрессии выбор вида математической функции
может быть осуществлен тремя методами: графическим, аналитическим и
экспериментальным.
Графический метод основан на поле корреляции. Аналитический метод основан
на изучении материальной природы связи исследуемых признаков.
Экспериментальный метод осуществляется путем сравнения величины остаточной
дисперсии Dост, рассчитанной при разных моделях. Если фактические
значения результативного признака совпадают с теоретическими у =
, то Docm =0. Если имеют место отклонения фактических
данных от теоретических (у —
) то .
Чем меньше величина остаточной дисперсии, тем лучше уравнение регрессии
подходит к исходным данным. Число наблюдений должно в 6 — 7 раз превышать
число рассчитываемых параметров при переменной х.
№ 2 ЛИНЕЙНАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ: СМЫСЛ И ОЦЕНКА ПАРАМЕТРОВ.
Линейная регрессия сводится к нахождению уравнения вида или .
Уравнение вида
позволяет по заданным значениям фактора x иметь теоретические значения
результативного признака, подставляя в него фактические значения фактора х.
Построение линейной регрессии сводится к оценке ее параметров а и в.
Оценки параметров линейной регрессии могут быть найдены разными методами.
1.
2.
Параметр b называется коэффициентом регрессии. Его величина показывает
среднее изменение результата с изменением фактора на одну единицу.
Формально а — значение у при х = 0. Если признак-фактор
не имеет и не может иметь нулевого значения, то вышеуказанная
трактовка свободного члена, а не имеет смысла. Параметр, а может
не иметь экономического содержания. Попытки экономически
интерпретировать параметр, а могут привести к абсурду, особенно при а < 0.
Интерпретировать можно лишь знак при параметре а. Если а > 0,
то относительное изменение результата происходит медленнее, чем изменение
фактора.
Уравнение регрессии всегда дополняется показателем тесноты связи. При
использовании линейной регрессии в качестве такого показателя выступает
линейный коэффициент корреляции rxy. Существуют разные
модификации формулы линейного коэффициента корреляции.
Линейный коэффициент корреляции находится и границах: -1≤.rxy
≤ 1. При этом чем ближе r к 0 тем слабее корреляция и наоборот чем
ближе r к 1 или -1, тем сильнее корреляция, т.е. зависимость х и у близка к
линейной. Если r в точности =1или -1 все точки лежат на одной прямой.
Если коэф. регрессии b>0 то 0 ≤.rxy ≤ 1 и
наоборот при b<0 -1≤.rxy ≤0. Коэф.
корреляции отражает степени линейной зависимости м/у величинами при наличии
ярко выраженной зависимости др. вида.
Для оценки качества подбора линейной функции рассчитывается квадрат линейного
коэффициента корреляции
, называемый коэффициентом детерминации. Коэффициент детерминации
характеризует долю дисперсии результативного признака y, объясняемую
регрессией. Соответствующая величина
характеризует долю дисперсии у, вызванную влиянием остальных не учтенных
в модели факторов.
№ 3. МНК.
МНК позволяет получить такие оценки параметров а и b, которых
сумма квадратов отклонений фактических значений результативного признака
(у) от расчетных (теоретических)
минимальна:
Иными словами, из
всего множества линий линия регрессии на графике выбирается так, чтобы сумма
квадратов расстояний по вертикали между точками и этой линией была бы
минимальной.
Решается система нормальных уравнений
№ 4. ОЦЕНКА СУЩЕСТВЕННОСТИ ПАРАМЕТРОВ ЛИНЕЙНОЙ РЕГРЕССИИ И КОРРЕЛЯЦИИ.
Оценка значимости уравнения регрессии в целом дается с помощью F-критерия
Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен
нулю, т. е. b = 0, и следовательно, фактор х не оказывает
влияния на результат у.
Непосредственному расчету F-критерия предшествует анализ дисперсии.
Центральное место в нем занимает разложение общей суммы квадратов отклонений
переменной у от средне го значения у на две части -
«объясненную» и «необъясненную»:
- общая сумма квадратов отклонений
- сумма квадратов
отклонения объясненная регрессией
- остаточная сумма квадратов отклонения.
Любая сумма квадратов отклонений связана с числом степеней свободы, т.
е. с числом свободы независимого варьирования признака. Число степеней свободы
связано с числом единиц совокупности nис числом определяемых по ней констант.
Применительно к исследуемой проблеме число cтепеней свободы должно показать,
сколько независимых отклонений из п возможных требуется для
образования данной суммы квадратов.
Дисперсия на одну степень свободы D.
F-отношения (F-критерий):
Ecли нулевая
гипотеза справедлива, то
отличаются друг от друга. Для Н0 необходимо опровержение, чтобы
факторная дисперсия превышала остаточную в несколько раз. Английским
статистиком Снедекором разработаны таблицы критических значений F-отношений
при разных уровнях существенности нулевой гипотезы и различном числе степеней
свободы. Табличное значение F-критерия — это максимальная величина отношения
дисперсий, которая
может иметь место при
уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения
признается достоверным, если о больше табличного. В этом случае нулевая
гипотеза об отсутствии связи признаков отклоняется и делается вывод о
существенности этой связи: Fфакт > Fтабл Н0
отклоняется.
Если же величина окажется меньше табличной Fфакт ‹, Fтабл
, то вероятность
нулевой гипотезы выше
отклонена без серьезного риска сделать неправильный вывод о наличии связи. В
этом случае уравнение регрессии считается статистически незначимым. Но
не отклоняется.
Стандартная ошибка коэффициента регрессии
Для оценки существенности коэффициента регрессии его величина сравнивается с
его стандартной ошибкой, т. е. определяется фактическое значение t-критерия
Стьюдентa: которое
затем сравнивается с табличным значением при определенном уровне значимости
и числе степеней свободы (n- 2).
Стандартная ошибка параметра а:
Значимость линейного коэффициента корреляции проверяется на основе величины
ошибки коэффициента корреляции тr:
Общая дисперсия признака х:
Коэф. регрессии Его
величина показывает ср. изменение результата с изменением фактора на 1 ед.
Ошибка аппроксимации:
№ 5. ИНТЕРВАЛЫ ПРОГНОЗА ПО ЛИНЕЙНОМУ УРАВНЕНИЮ
РЕГРЕССИИ