Автор: Пользователь скрыл имя, 19 Апреля 2012 в 18:59, курсовая работа
Статистическая грамотность является неотъемлемой составной частью профессиональной подготовки каждого менеджера, экономиста, финансиста, социолога, политолога, а также любого специалиста, имеющего дело с анализом массовых явлений, будь то социально-общественные, экономические, технические, научные и другие. Работа этих групп специалистов неизбежно связана со сбором, разработкой и анализом данных статистического (массового) характера.
Введение
Теоретическая часть
1 Понятие статистики трудовых ресурсов и её задачи
2 Показатели численности и движения трудовых ресурсов
3 Понятие о рядах динамики
4 Правила построения рядов динамики
5 Показатели анализа ряда динамики
6 Методы анализа основной тенденции развития в рядах динамики
7 Понятие корреляционной связи
8 Экстраполяция в рядах динамики и прогнозирование
Практическая часть
Аналитическая часть
Заключение
Коэффициент вариации представляет собой процентное отношение среднего квадратического отклонения к средней арифметической:
На
основании полученного
Вычислим среднюю арифметическую по исходным данным таблицы 1. Средняя арифметическая простая равна сумме значений признака, деленной на их число:
,
где y – значение признака;
n – число единиц признака.
чел.
Расхождения
между арифметической средней простой
и взвешенной возникли из-за того, что
арифметическая средняя взвешенная считалась
по сгруппированным данным.
2.2.
Выявление наличия
корреляционной связи
между признаками,
установление направления
связи и измерение
ее тесноты
Необходимо определить признак – среднегодовая стоимость ОПФ.
Таблица 2.6.: Исходные данные
|
Таблица 2.7.: Отсортированные данные
|
Построим интервальный ряд, характеризующий распределение организаций по среднегодовой стоимости ОПФ, образовав пять групп с равными интервалами (таблица 2.8.).
млн. руб.
Таблица 2.8.
|
Корреляционная таблица – это специальная комбинационная таблица, в которой представлена группировка по двум взаимосвязанным признакам: факторному и результативному. Необходимо определить, существует ли зависимость между среднегодовой стоимостью ОПФ и среднесписочной численностью работников. Построим корреляционную таблицу, образовав пять групп по факторному и результативному признакам (таблица 2.9.).
Совмещая данные по Х и Y получим следующую группировку: «Аналитическая группировка (по двум признакам)».
Таблица 2.9.
Центр.значение, Ycp(j) | 130 | 150 | 170 | 190 | 210 | Nj | ||||||
Группы по Х | Группы по У | 120 | 140 | 140 | 160 | 160 | 180 | 180 | 200 | 200 | 220 | |
16,000 | 24,985 | 2 | 1 | 3 | ||||||||
24,985 | 33,969 | 4 | 4 | |||||||||
33,969 | 42,954 | 12 | 12 | |||||||||
42,954 | 51,938 | 7 | 7 | |||||||||
51,938 | 60,923 | 4 | 4 | |||||||||
16,000 | 24,985 | 2 | 5 | 12 | 7 | 7 | 30 |
Как видно из данных таблицы 2.9., распределение числа субъектов произошло вдоль диагонали, проведенной из левого верхнего угла в правый нижний угол таблицы, то есть увеличение признака «Среднегодовая стоимость ОПФ» сопровождалось увеличением признака «Среднесписочная численность работников». Характер концентрации частот по диагонали корреляционной таблицы свидетельствует о наличии прямой тесной корреляционной связи между изучаемыми признаками.
Аналитическая группировка позволяет изучать взаимосвязь факторного и результативного признаков. Установим наличие и характер связи между среднегодовой стоимостью ОПФ и среднесписочной численностью работников методом аналитической группировки (таблица 2.10.).
Таблица 2.10.
Группа п/п | Число п/п | Х | У | ||
Всего по группе | В среднем | Всего по группе | В среднем | ||
16 - 24,985 | 3 | 59,737 | 19,912 | 406,000 | 135,333 |
24,985 - 33,969 | 4 | 117,521 | 29,380 | 634,000 | 158,500 |
33,969 - 42,954 | 12 | 447,974 | 37,331 | 1980,000 | 165,000 |
42,954 - 51,938 | 7 | 330,329 | 47,190 | 1330,000 | 190,000 |
51,938 - 60,923 | 4 | 224,149 | 56,037 | 840,000 | 210,000 |
Итого | 30 | 1179,710 | 39,324 | 5190,000 | 173,000 |
Данные таблицы 2.10. показывают, что с ростом среднесписочной численности работников среднегодовая стоимость ОПФ увеличивается. Следовательно, между исследуемыми признаками существует прямая корреляционная связь.
Вычислим коэффициент детерминации и эмпирическое корреляционное отношение, для чего выполним некоторые расчеты.
Таблица 8: Исходные данные и расчет коэффициента детерминации
|
Информация о работе Статистические методы анализа динамики численности работников