Автор: Пользователь скрыл имя, 29 Мая 2013 в 22:19, шпаргалка
Работа содержит ответы на вопросы для экзамена (зачета) по "Статистике"
Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.
21) Абсолютные показатели размера вариации
Чтобы дать представление о величине варьирующего признака недостаточно исчислить средний показатель. Кроме средней необходим показатель, характеризующий вариацию признака.
Вариация – это изменение значения признака у отдельных единиц совокупности.
Вариация обусловлена
Наиболее простой
R=xmax – xmin,
где xmax – наибольшее значение признака;
xmin – наименьшее значение признака.
Размах вариации не отражает отклонений всех значений признака – это его недостаток. Он исчисляется при контроле качества продукции для определения систематически действующих причин на производственный процесс.
Для измерения отклонения каждой варианты от средней величины в ряду распределения или в группировке применяется среднее линейное отклонение (d).
Среднее линейное отклонение определяется по формулам:
а) для несгруппированных данных (ранжировочного ряда) (простое);
б) для вариационного интервального ряда: (взвешенное).
Среднее линейное отклонение показывает, на сколько в среднем каждое значение признака отклоняется от средней величины. Эта величина всегда именованная и измеряется в тех же величинах, в которых даны статистические показатели.
Среднее линейное отклонение дает обобщенную характеристику степени колеблемости признаков совокупности.
Средние линейные отклонения применяются на практике для анализа состава рабочих, ритмичности производства, равномерности поставок материалов и т.д.
Наибольшее применение в практике статистических работ находит показатель – дисперсия признака или средний квадрат отклонений, или квадрат среднего квадратического отклонения ( ). Дисперсия – – определяется по формулам:
а) для ранжировочного ряда (несгруппировочных данных): (простая);
б) для интервального ряда: (взвешенная).
Корень квадратный из дисперсии представляет среднее квадратическое отклонение ( ): ; или
а) для ранжировочного ряда: (простое);
б) для вариационного ряда: (взвешенное).
Среднее квадратическое отклонение дает обобщенную характеристику признака совокупности и показывает во сколько раз в среднем колеблется величина признака совокупности. В зарубежной литературе оно называется стандартным отклонением и применяется в различных стандартах.
Среднее квадратическое отклонение по величине всегда больше среднего линейного отклонения. Среднее квадратическое отклонение является мерой надежности средней величины: чем оно меньше, тем точнее средняя арифметическая.
Дисперсия является оценкой одноименного показателя теории вероятности. Сопоставление линейных или среднеквадратических отклонений по признакам совокупности дает возможность определить статистическую однородность совокупности: чем меньше размер, тем совокупность более однородна.
22) Относительные показатели
Для сравнения вариации в разных совокупностях рассчитываются относительные показатели вариации. К ним относятся коэффициент вариации, коэффициент осцилляции и линейный коэффициент вариации (относительное линейное отклонение).
Коэффициент вариации – это отношение среднеквадратического отклонения к среднеарифметическому, рассчитывается в процентах:
.
Коэффициент вариации позволяет судить об однородности совокупности:
– < 17% – абсолютно однородная;
– 17–33%% – достаточно однородная;
– 35–40%% – недостаточно однородная;
– 40–60%% – это говорит о большой колеблемости совокупности.
Коэффициент осцилляции – это отношение размаха вариации к средней, в процентах. Отражает относительную колеблемость крайних значений признака вокруг средней. .
Линейный коэффициент вариации характеризует долю усредненного значения абсолютного отклонения от средней величины. .
23) Дисперсия признака.
Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:
1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:
2. Взвешенная дисперсия (для вариационного ряда):
где n - частота (повторяемость фактора Х)
Виды дисперсии
Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.
Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.
Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:
где хi — групповая средняя;
ni — число единиц в группе.
Например, внутригрупповые дисперсии,
которые надо определить в задаче
изучения влияния квалификации рабочих
на уровень производительности труда
в цехе показывают вариации выработки
в каждой группе, вызванные всеми
возможными факторами (техническое
состояние оборудования, обеспеченность
инструментами и материалами, возраст
рабочих, интенсивность труда и
т.д.), кроме отличий в
Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:
Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:
24) Закон сложения (разложения) вариации и дисперсии
Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:
Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.
Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.
25) Понятие рядов распределения, их виды.
Часто встречаются группировки,
где известна численность единиц
в группах или удельный вес
каждой группы в общем итоге. Такая
группировка называется рядом распределения.
Ряд распределения
1. Обозначение группы
2. Численность единиц в группах
Численность каждой группы называется частотами ряда распределения. Сумма всех частот определяет численность всей совокупности. Численность групп, выраженная в долях от общей численности единиц называется частостями и выражается в процентах.
Ряды распределения могут быть образованы по атрибутивному или количественному признакам. При группировке по атрибутивному признаку ряд распределения составляют отдельные группы, указываемые их наименованием и численность или удельный вес каждой группы в процентах к итогу.
При группировке данных по количественному признаку получаются ряды, называемые вариационными. В статистике различают вариационные ряды прерывные (дискретные) и непрерывные. Вариационный ряд будет дискретным, если его группы составлены по признаку изменяющемуся прерывно. Вариационный ряд называется непрерывным если группировочный признак, составляющий основание группировки может принимать в определенном интервале любые значения.
Статистический ряд распределения - это упорядоченое распределение единиц совокупности на группы по определенному варьирующему признаку.
В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения.
Атрибутивными называют ряды распределения, построенные по качественным признакам. Ряд распределения принято оформлять в виде таблиц. Ниже приведем атрибутивный ряд распределения юридической помощи адвокатов гражданам. Представленный в табл. 3.11 ряд показывает, как общее число случаев юридической помощи адвокатов распределялось по видам и формам правовой помощи в 1994 г.
Элементами этого ряда распределения являются значения атрибутивного признака, представленного названиями видов правовой помощи, оказанной адвокатами, и числа случаев, относящихся к каждому виду и форме помощи. Наибольший удельный вес (почти 79%) приходится на оказание юридической помощи и виде устных советов.
Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам. Взятые на несколько периодов, эти данные позволят исследовать изменение структуры.
Вариационными называют ряды распределения, построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот. Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду, т е. конкретное значение варьирующего признака. Частоты - это численности отдельных вариантов или каждой группы вариационного ряда, т. е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, ее объем.
Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100%.
В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды.
Как известно, вариация количественных признаков может быть дискретной (прерывной) или непрерывной.
В случае дискретной вариации величина количественного признака принимает только целые значения. Следовательно, дискретный вариационный ряд характеризует распределение единиц совокупности по дискретному признаку.
26) Понятие о выборочном
Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелесообразно. Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением, например, дегустация, испытание кирпичей на прочность и т.п.
Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весь их массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают n, а во всей ГС - N. Отношение n/N называется относительный размер или доля выборки.
Качество результатов
Существует 4 способа случайного отбора в выборку: