Распределение предприятий и организаций по субъектам Российской Федерации

Автор: Пользователь скрыл имя, 22 Мая 2013 в 21:48, курсовая работа

Описание работы

В работе выполнен анализ показателя «Распределение предприятий и организаций по субъектам Российской Федерации и видам экономической деятельности (здравоохранение и оказание социальных услуг) на конец 2010 года». В ходе анализа показателя выполнена простая сводка, две группировки, построен вариационный ряд, рассчитаны показатели вариации, осуществлена проверка гипотезы о нормальном распределении, проведен корреляционный анализ, осуществлено выборочное наблюдение. Так же был выполнен анализ динамики показателя ««Оборот розничной торговли по РФ, в фактически действовавших ценах, млн. руб.» в период с 2005 по 2010 гг. В ходе этого анализа были рассчитаны показатели динамики, тенденции динамики, построен тренд, рассчитаны показатели колеблимости.

Содержание

ВВЕДЕНИЕ 4
1 СВОДКА И ГРУППИРОВКА ДАННЫХ 6
2 ВАРИАЦИОННЫЙ АНАЛИЗ 12
3 ПРОВЕРКА ГИПОТЕЗЫ О НОРМАЛЬНОМ ХАРАКТЕРЕ
РАСПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ 21
4 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ 24
5 ОЦЕНКА ПАРАМЕТРОВ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ НА
ОСНОВЕ ВЫБОРОЧНЫХ ДАННЫХ 35
6 АНАЛИЗ РЯДОВ ДИНАМИКИ 40
ЗАКЛЮЧЕНИЕ 50
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 51
ПРИЛОЖЕНИЕ А. 52
ПРИЛОЖЕНИЕ Б. 55
ПРИЛОЖЕНИЕ В. 61
ПРИЛОЖЕНИЕ Г. 62
ПРИЛОЖЕНИЕ Д. 63

Работа содержит 1 файл

Курсовая(статистика).docx

— 227.56 Кб (Скачать)

Изобразим эту группировку  графически на рис. 1.2.

 

 

Рисунок 1.2 - Группировка  с выделением регионов Российской Федерации со значением показателя выше и ниже значения в Челябинской области.

 

Видно, что значения показателя «Распределение предприятий и организаций по субъектам Российской Федерации и видам экономической деятельности (здравоохранение и оказание социальных услуг) на конец 2010 года» не одинаковы в регионах. Количество регионов со значением выше среднего меньше чем количество регионов со значением ниже среднего. Сопоставляя значение по Челябинской области со значениями других регионов, можно сказать, что она входит в число лидеров РФ по данному показателю. 

2. Вариационный анализ.

Прежде всего, необходимо построить вариационный ряд исследуемого показателя. Так как число единиц совокупности достаточно велико, построим интервальный вариационный ряд. Методика определения длинны интервалов такова:

- по формуле 2.1 определяем  оптимальное число интервалов  k,

- если величина k не целая, то мы округляем её в большую и меньшую сторону, получая значения k1 и k2, если величина k – целая, тогда принимаем k1 = k2,

- по формуле 2.2 находим размах вариации R,

- находим длину интервала l1 по формуле 2.3, которая имела бы место при условии выбора в пользу k1 интервалов,

- находим предельную длину  интервала l2 по формуле 2.3, которая имела бы место при условии выбора в пользу k2 интервалов.

- выбираем удобное для  восприятия значение длины ряда  между l1 и l2.

Представим формулы, необходимые  для расчетов:

                                      k = 1 + 3,32*lg(n)                                                (2.1)

где n – число единиц совокупности.

                                                     R = xmax – xmin                                                 (2.2)

где xmax – максимальное значение показателя в совокупности,

      xmin – минимальное значение показателя в соокупности.

                                                       li                                                            (2.3)

где ki – округленное значение числа интервалов k.

Итак, значение k, рассчитанное по формуле 2.1, составило 7,37, соответственно k1 = 7, k2 = 8.

Из таблицы 1.1 видно, что  максимальное значение показателя «Распределение предприятий и организаций по субъектам Российской Федерации и видам экономической деятельности (здравоохранение и оказание социальных услуг) на конец 2010 года» составляет 11271 шт., а минимальное – 35шт.. Это значит, что размах, рассчитанный по формуле 2.2 составляет 11236 шт.

Значения l1 и l2, рассчитанные по формуле 2.3 составляют 1404,5 шт. и 1605,14286 шт. соответственно.

Наиболее удобное для  восприятия значение длинны интервала  – 1500.

Представим такой вариационный ряд в таблице 2.1.

Таблица 2.1 – интервальный вариационный ряд распределения  показателя «Распределение предприятий и организаций по субъектам Российской Федерации и видам экономической деятельности (здравоохранение и оказание социальных услуг) на конец 2010 года».

№ интервала

Распределение предприятий  и организаций, шт.

Количество регионов

1

0-1500

70

2

1500-3000

10

3

3000-4500

2

4

4500-6000

-

5

6000-7500

-

6

7500-9000

-

7

9000-10500

-

8

10500-12000

1

Итого

83


 

Из этой таблицы видно, что в исследуемой совокупности присутствуют регионы с нетипичным значением исследуемого показателя. Необходимо исключить их из дальнейшего  анализа. После исключения регионов Московская область, г. Москва, г. Санкт-Петербург, Краснодарский край получим вариационный ряд, лишенный нетипичных значений.

После изменений, максимальное значение в совокупности составляет 1937,00 шт., а минимальное - 35 шт. следовательно, размах составляет 1902,00 шт., а так же: k1 = 7, k2 = 8, l1 = 271,7 шт., l2 = 237,75 шт.. Наиболее удобное для восприятия значение длинны интервала – 250. Такой интервал представлен в таблице 2.2.

Таблица 2.2 - интервальный вариационный ряд распределения показателя «Распределение предприятий и организаций по субъектам Российской Федерации и видам экономической деятельности (здравохранение и оказание социальных услуг) на конец 2010 года».

№ интервала

Распределение предприятий  и организаций, шт.

Количество 

регионов

1

0-250

13

2

250-500

22

3

500-750

15

4

750-1000

8

5

1000-1250

7

6

1250-1500

5

7

1500-1750

6

8

1750-2000

3

Итого:

79


 

 

Отобразим полученный вариационный ряд на рис. 2.1.

 

 

 

 

Рис 2.1 - интервальный вариационный ряд распределения показателя «Распределение предприятий и организаций по субъектам Российской Федерации и видам экономической деятельности (здравоохранение и оказание социальных услуг) на конец 2010 года»

Построим огиву и кумуляту, для этого осуществим расчет наколенных частот в таблице 2.3

Таблица 2.3 – расчет накопленных  частот для построения огивы и кумуляты.

№ интервала

Распределение предприятий  и организаций, шт.

 

Количество регионов

Кумулята

Огива

1

35-250

13

13

79

2

250-500

22

35

66

3

500-750

15

50

44

4

750-1000

8

58

29

5

1000-1250

7

65

21

6

1250-1500

5

70

14

7

1500-1750

6

76

9

8

1750-2000

3

79

3


 

Изобразим графически огиву и кумуляту на рис. 2.2.

Рис. 2.2 – кумулятивное распределение.

 Теперь, рассчитаем показатели  вариации.

Среднее значение рассчитывается по формуле 2.4.

                                                                                           (2.4)

где – средина i-того интервала,

      fi – количество регионов, попадающих в  i-ый интервал.

В среднем по России, число  предприятий и организаций здравоохранения  и оказания социальных услуг составляет 713,6 шт.

Далее запишем формулы, необходимые  для расчета остальных показателей  вариации, а результат представим в итоговой таблице.

Мода рассчитывается по формуле 2.5.

                                     (2.5)

 

где х0 – нижняя граница модального интервала,

       fmo – частота в модальном интервале,

       fmo+1 – частота в интервале, следующим за модальным,

       fmo-1 – частота в интервале, предшествующем модальному.        

Медиана рассчитывается по формуле 2.6.

                                                                               (2.6)

где x0 – нижняя граница медианного интервала,

      fme – частота в медианном интервале,

      f’me – накопленная частота в интервале, предшествующем медианному.

Промежуточные расчеты, необходимые  для расчета нижеследующих показателей  вариации представлены в приложении В.

Среднее линейное отклонение (СЛО) рассчитывается по формуле 2.7.

                                                                                                 (2.7)

Дисперсия рассчитывается по формуле 2.8.

                                                                                                       (2.8)

Среднее квадратичное отклонение рассчитывается как корень квадратный из дисперсии и обозначается .

Центральный момент третьего порядка рассчитывается по формуле 2.9:

                                                                                  (2.9)

Центральный момент четвертого порядка рассчитывается по формуле 2.10:

                                                                              (2.10)

Коэффициент ассиметрии рассчитывается по формуле 2.11:

                                                                                               (2.11)

Коэффициент ассиметрии Пирсона рассчитывается по формуле 2.12.

                                                                                             (2.12)

Показатель эксцесса рассчитывается по формуле 2.13.

                                                                                 (2.13)

Относительный размах вариации рассчитывается по формуле 2.14.

 

(2.14)


Относительное линейное отклонение рассчитывается по формуле 2.15.

 

 

(2.15)


Коэффициент вариации рассчитывается по формуле 2.16.

 

(2.16)


Представим результаты расчетов в таблице 2.4

 

 

 

 

 

 Табл. 2.4 – показатели вариации значений показателя «Распределение предприятий и организаций по субъектам Российской Федерации и видам экономической деятельности (здравоохранение и оказание социальных услуг) на конец 2010 года» с учетом исключенных регионов.

Показатель вариации

Единицы измерения

Значение показателя вариации

1

мин

шт.

35

2

макс

шт.

1937

3

размах

шт.

1902

4

сред. знач.

шт.

713,6

5

дисперсия

шт.

250060,1

6

ско

шт.

500,1

7

сло

шт.

416,0

8

ц.момент 3

шт.

97389608,1

9

ц.момент 4

шт.

159633611585,1

10

отн. размах

%

%

266,5

11

отн. откл.

%

58,3

12

к. вар.

%

70,1

13

As

-

0,8

14

Asп

-

0,6

15

Ex

-

-0,4

16

Mo

шт.

390,6

17

Me

шт.

551,1

Информация о работе Распределение предприятий и организаций по субъектам Российской Федерации