Методические приемы при обучении младших школьников выполнению действий в выражениях

Автор: Пользователь скрыл имя, 20 Декабря 2011 в 07:19, контрольная работа

Описание работы

ЦЕЛЬ ИССЛЕДОВАНИЯ: выявление особенностей формирования понятия свойств арифметических действий у младших школьников.

ОБЪЕКТ ИССЛЕДОВАНИЯ: процесс изучения математики в начальных классах.

ПРЕДМЕТ ИССЛЕДОВАНИЯ: Методические приемы при обучении младших школьников выполнению действий в выражениях.

Содержание

Введение…………………………………………………………..........3
Арифметические действия, изучаемые в начальной школе………..
Значение обучения младших школьников выполнению арифметических действий в выражениях ...…………………………
Анализ методических приемов при выполнении арифметических действий ………………………………………………………………..
Описание опытно-экспериментальной работы и ее результаты ……
Заключение……………………………………………………………...
Список используемой литературы…………………………………….
Приложения……………………………………………………………..

Работа содержит 1 файл

Документ Microsoft Office Word (2).docx

— 51.14 Кб (Скачать)

Вместо привычного "Решение примеров" в речи учителя  и учащихся звучит: "Найдем значение выражения", "Сравним выражения" и т.п.

В программе  предусмотрено ознакомление с некоторыми свойствами арифметических действий и  основанными на них приемами вычислений. Так, в теме "Числа от 1 до 10" дети знакомятся с переместительным свойством сложения, учатся пользоваться приемом перестановки слагаемых  в тех случаях, когда его применение облегчает вычисления (например, в  случаях вида 2 + 7, 1+6 и т.п.). На основе практических действий с предметами учащиеся знакомятся с тем, что прибавить  или вычесть число можно по частям (например, 6 + 3 = 6 + 2+1, 6 - 3 = 6 - 2-1). Таким  образом учащиеся практически знакомятся с сочетательным свойством сложения, которое во II классе будет специально рассмотрено и сформулировано. Ознакомление со связью между сложением и вычитанием дает возможность находить разность, опираясь на знание состава чисел и соответствующих случаев сложения.

Центральной задачей  при изучении раздела "Числа от 1 до 20" является изучение табличного сложения и вычитания. Внетабличное сложение и вычитание, умножение однозначных чисел и соответствующие случаи деления рассматриваются в теме "Числа от 1 до 100", которая изучается на втором и третьем годах обучения.

Чтобы обеспечить прочное, доведенное до автоматизма  усвоение таблиц сложения и умножения, важно не только своевременно создать  у детей установку на их запоминание, но и организовать повседневную тренировочную работу, а также систематический контроль за усвоением таблиц каждым учеником.

Перед изучением  внетабличного умножения и деления дети знакомятся с разными способами умножения или деления суммы на число (в случае, когда каждое слагаемое делится на это число). Изученные свойства действий используются также для рационализации вычислений, когда речь идет о нахождении значений выражений, содержащих несколько действий.

Наряду с устными  приемами в программе уделяется  большое внимание обучению детей  письменным вычислениям. Эта работа начинается уже в теме "Сотня". Впервые программа предусматривает  ознакомление учащихся с записью  сложения и вычитания столбиком  во II классе при рассмотрении более  сложных случаев сложения и вычитания  в пределах 100. На третьем и четвертом  годах обучения в теме "Числа  от 1 до 1000" дети знакомятся также  с письменными приемами умножения  и деления на однозначное число.

В теме "Числа, которые больше 1000" предусматривается  изучение нумерации и четырех  арифметических действий над многозначными  числами.

Сейчас, когда  дети постоянно слышат не только о  миллионах, но и миллиардах, уже нельзя ограничивать их рассмотрением чисел  в пределах миллиона. Поэтому предусмотрено  ознакомление с классами не только тысяч, но и миллионов, миллиардов. Это  дает возможность сформировать и  закрепить представления детей  о том, как образуются классы чисел, научить их читать, записывать, сравнивать такие числа. Однако выполнение арифметических действий ограничено пределами миллиона. При ознакомлении с письменными  приемами выполнения арифметических действий важное значение придается алгоритмизации. Все объяснения даются в виде четко сформулированной последовательности шагов, которые должны быть выполнены. При рассмотрении каждого алгоритма сложения, вычитания, умножения или деления четко выделены основные этапы, план рассуждений, подлежащие усвоению каждым учеником. Это поможет правильно организовать процесс формирования вычислительных умений. В этом процессе должен осуществляться своевременный переход от подробного объяснения каждого шага рассуждений к постепенному свертыванию объяснений, когда выделяются только основные элементы алгоритма. Например: "Делю тысячи, получаю... ", "Делю сотни, получаю... ", "Делю десятки, получаю..." и т.д.

Вместе с тем  с самого начала обучения у детей  формируются некоторые важные обобщения. Так, на примере чисел первого десятка выясняется, как образуется каждое следующее число в натуральном ряду, устанавливается соотношение между любым числом ряда и всеми предшествующими или последующими числами, учащиеся знакомятся с различными способами сравнения чисел (сначала на основе сравнения соответствующих групп предметов, а затем по месту, которое занимают сравниваемые числа в ряду).

При изучении сложения и вычитания в пределах 10 дети знакомятся с названиями действий, их компонентов и результатов, терминами  равенство, неравенство. При этом имеется в виду, что математические термины должны усваиваться детьми естественно, как усваиваются ими любые новые для них слова, если они часто употребляются окружающими и находят применение в практике. В дальнейшем, во II классе, вводятся термины выражение, значение выражения.

Помимо терминологии, дети усваивают и некоторые элементы математической символики: знаки действий (плюс, минус), знаки отношений (больше, меньше, равно); они учатся читать и записывать простейшие математические выражения вида 5 + 4, 7 - 2, а также более сложные выражения вида 6 + (6 - 2).

Вместо привычного "Решение примеров" в речи учителя  и учащихся звучит: "Найдем значение выражения", "Сравним выражения" и т.п.

В программе  предусмотрено ознакомление с некоторыми свойствами арифметических действий и  основанными на них приемами вычислений. Так, в теме "Числа от 1 до 10" дети знакомятся с переместительным свойством сложения, учатся пользоваться приемом перестановки слагаемых в тех случаях, когда его применение облегчает вычисления (например, в случаях вида 2 + 7, 1+6 и т.п.). На основе практических действий с предметами учащиеся знакомятся с тем, что прибавить или вычесть число можно по частям (например, 6 + 3 = 6 + 2+1, 6 - 3 = 6 - 2-1). Таким образом учащиеся практически знакомятся с сочетательным свойством сложения, которое во II классе будет специально рассмотрено и сформулировано. Ознакомление со связью между сложением и вычитанием дает возможность находить разность, опираясь на знание состава чисел и соответствующих случаев сложения.

Центральной задачей  при изучении раздела "Числа от 1 до 20" является изучение табличного сложения и вычитания. Внетабличное сложение и вычитание, умножение однозначных чисел и соответствующие случаи деления рассматриваются в теме "Числа от 1 до 100", которая изучается на втором и третьем годах обучения.

Чтобы обеспечить прочное, доведенное до автоматизма  усвоение таблиц сложения и умножения, важно не только своевременно создать  у детей установку на их запоминание, но и организовать повседневную тренировочную  работу, а также систематический  контроль за усвоением таблиц каждым учеником.

Перед изучением  внетабличного умножения и деления дети знакомятся с разными способами умножения или деления суммы на число (в случае, когда каждое слагаемое делится на это число). Изученные свойства действий используются также для рационализации вычислений, когда речь идет о нахождении значений выражений, содержащих несколько действий.

Наряду с устными  приемами в программе уделяется  большое внимание обучению детей  письменным вычислениям. Эта работа начинается уже в теме "Сотня". Впервые программа предусматривает  ознакомление учащихся с записью  сложения и вычитания столбиком  во II классе при рассмотрении более  сложных случаев сложения и вычитания  в пределах 100. На третьем и четвертом годах обучения в теме "Числа от 1 до 1000" дети знакомятся также с письменными приемами умножения и деления на однозначное число.

В теме "Числа, которые больше 1000" предусматривается  изучение нумерации и четырех  арифметических действий над многозначными  числами.

Сейчас, когда  дети постоянно слышат не только о  миллионах, но и миллиардах, уже нельзя ограничивать их рассмотрением чисел  в пределах миллиона. Поэтому предусмотрено  ознакомление с классами не только тысяч, но и миллионов, миллиардов. Это  дает возможность сформировать и  закрепить представления детей  о том, как образуются классы чисел, научить их читать, записывать, сравнивать такие числа. Однако выполнение арифметических действий ограничено пределами миллиона. При ознакомлении с письменными  приемами выполнения арифметических действий важное значение придается алгоритмизации. Все объяснения даются в виде четко сформулированной последовательности шагов, которые должны быть выполнены. При рассмотрении каждого алгоритма сложения, вычитания, умножения или деления четко выделены основные этапы, план рассуждений, подлежащие усвоению каждым учеником. Это поможет правильно организовать процесс формирования вычислительных умений. В этом процессе должен осуществляться своевременный переход от подробного объяснения каждого шага рассуждений к постепенному свертыванию объяснений, когда выделяются только основные элементы алгоритма. Например: "Делю тысячи, получаю... ", "Делю сотни, получаю... ", "Делю десятки, получаю..." и т.д.

Особого внимания заслуживает рассмотрение правил о  порядке выполнения арифметических действий. Эти правила вводятся постепенно, начиная с первого класса, когда  дети уже имеют дело с выражениями, содержащими только сложение и вычитание. Здесь они усваивают, что действия выполняются в том порядке, как  они записаны: слева направо. Во II классе вводятся скобки как знаки, указывающие  на изменение порядка выполнения действий. Правила о порядке выполнения действий усложняются при ознакомлении с умножением и делением в теме "Числа от 1 до 100". В дальнейшем, на последнем году обучения в начальной школе, рассматриваются новые для учащихся правила о порядке выполнения действий в выражениях, содержащих две пары скобок или два действия внутри скобок.

В основе построения программы Н.Б. Истоминой лежит  методическая концепция, выражающая необходимость  целенаправленной и систематической  работы по формированию у младших  школьников приемов умственной деятельности: анализа и синтеза, сравнения, классификации, аналогии и обобщения - в процессе усвоения математического содержания.

Направленность  процесса обучения математике в начальных  классах на формирование основных мыслительных операций позволяет включить интеллектуальную деятельность младшего школьника в  различные соотношения с другими  сторонами его личности, прежде всего  с мотивацией и интересами, оказывая тем самым положительное влияние  на развитие внимания, памяти (двигательной, образной, вербальной, эмоциональной, смысловой), эмоции и речи ребенка.

Практическая  реализация концепции находит выражение:

в логике построения содержания курса, в основе, которой  лежит система математических понятий  и общих способов действий;

в методическом подходе к формированию понятий и общих способов действий, в основе которого лежит установление соответствия между предметными - вербальными - схематическими и символическими моделями;

в системе учебных  заданий, которая адекватна концепции  курса, логике построения его содержания и нацелена на осознание школьниками  учебных задач, на овладение способами  их решения и на формирование у  них умения контролировать и оценивать  свои действия.

В связи с  этим процесс выполнения учебных  заданий носит продуктивный характер, который исходя из психологических особенностей младших школьников определяется соблюдением баланса между логикой и интуицией, словом и наглядным образом, осознанным и подсознательным, догадкой и рассуждением.

В процесс выполнения учебных заданий включается и  репродуктивная деятельность, которая  связана с использованием необходимой  математической терминологии для объяснения выполняемых действий, с вычислениями, с усвоением определенных правил. Но при этом даже выполнение вычислительных упражнений обязательно сопровождается выявлением определенных зависимостей, связей, закономерностей. Для этого  в заданиях специально подбираются  математические выражения, при анализе  которых дети используют математические понятия, свойства и приемы умственных действий. Это способствует не только быстрому формированию вычислительных умений и прочных вычислительных навыков, но и повышению уровня вычислительной культуры обучающихся.

В предлагаемом курсе дети сначала усваивают (или  уточняют, если они пришли в школу  подготовленными в этом плане) последовательность слов-числительных, которой можно  пользоваться для счета предметов. Затем овладевают операцией счета, т.е. устанавливают взаимно однозначное  соответствие между предметом и  словом-числительным. Заменяя слова-числительные знаками (в произвольном порядке), обучающиеся  знакомятся с цифрами и учатся красиво писать их. Можно, например, начать с цифры 1, затем научиться  писать цифры 4, 7, 6, 9 и т.д.

В теме "Однозначные  числа" учащиеся знакомятся с отрезком натурального ряда чисел от 1 до 9. Пересчитывая предметы данной совокупности и заменяя слова-числительные соответствующими знаками (цифрами), они получают ряд чисел, которым можно пользоваться для счета предметов. Принцип построения этого ряда осознается детьми в процессе выполнения различных заданий, которые связаны с операцией счета, присчитывания и отсчитывания.

Знакомство обучающихся  с лучом, отрезком и способом измерения  длины с помощью различных  мерок позволяет ввести понятие  числовой луч и использовать его как наглядное средство для сравнения чисел, а затем для их сложения и вычитания.

В качестве математической основы разъяснения смысла, сложения выступает теоретико-множественная  трактовка суммы как объединения  множеств, не имеющих общих элементов. Она легко переводится на язык предметных действий, что позволяет  при формировании представлений  о смысле сложения опираться на опыт детей, активно используя счет и  операции присчитывания и отсчитывания.

Для разъяснения  смысла сложения используется идея соответствия предметного действия его словесному описанию и математической записи, которые интерпретируются на числовом луче. Для чтения математических записей  вводится терминология: выражение, равенство, слагаемые, значение суммы, употребление которой позволяет исключить такой термин, как примеры. Интерпретация сложения на числовом луче помогает ребенку абстрагироваться от предметных действий.

Информация о работе Методические приемы при обучении младших школьников выполнению действий в выражениях