Автор: Пользователь скрыл имя, 20 Декабря 2011 в 07:19, контрольная работа
ЦЕЛЬ ИССЛЕДОВАНИЯ: выявление особенностей формирования понятия свойств арифметических действий у младших школьников.
ОБЪЕКТ ИССЛЕДОВАНИЯ: процесс изучения математики в начальных классах.
ПРЕДМЕТ ИССЛЕДОВАНИЯ: Методические приемы при обучении младших школьников выполнению действий в выражениях.
Введение…………………………………………………………..........3
Арифметические действия, изучаемые в начальной школе………..
Значение обучения младших школьников выполнению арифметических действий в выражениях ...…………………………
Анализ методических приемов при выполнении арифметических действий ………………………………………………………………..
Описание опытно-экспериментальной работы и ее результаты ……
Заключение……………………………………………………………...
Список используемой литературы…………………………………….
Приложения……………………………………………………………..
СОДЕРЖАНИЕ
Введение
Содержание курса
арифметики в разные времена у
разных народов было весьма различно.
Индийцы, например, причисляли извлечение
кубического корня к
Л.Ф. Магницкий, определив арифметику, как "художество честное, независимое и всем удобопонятное, многополезнейшее и многопохвальнейшее", рассматривает в своей книге пять "определений" или арифметических действий: "нумерацию или счисление, аддицию или сложению, субтракцию или вычитание, мультипликацию еже есть умножение и дивизио еже есть деление".
Различно было понимание того, что называется арифметическими действиями. В латинских учебниках, которыми в течение нескольких веков пользовались школы всех народов, эти действия назывались виды (действия) (от лат. species). Это наименование определения арифметических действий впервые встречается в рукописях XIII в. В XVI в. оно становится общеупотребительным и вытесняет термин часть арифметическая (от лат. рагs arthmetika). Индийские математики рассматривали шесть арифметических действий: сложение, вычитание, умножение, деление, возведение в степень и извлечение корней.
Сакробоско (XIII в) имеет их девять, как и многие авторы последующих веков: нумерация, сложение, вычитание, удвоение, умножение (деление пополам), деление, прогрессия, извлечение корней. Действие "прогрессия" рассматривало в большинстве случаев суммирование чисел натурального ряда, в редких случаях суммирование отдельно четных и нечетных чисел натурального ряда, и лишь в исключительных случаях суммирование двух простейших геометрических прогрессий 1, 2, 4, 8,... и 1, 3, 9, 27,...
Извлечение корней ограничивалось в большинстве случаев только квадратными корнями. Действие "нумерация" вошло в учебники в качестве особого арифметического действия в эпоху, когда борьба между сторонниками римского и индийского способов счисления была злободневной (XIII и XIV вв.).
Действие "удвоения" берет свое начало из Египта. Как уже указано, основные сведения о египетской математике черпаются из папируса Райнда, написанного писцом Ахмесом в эпоху 1800-1600 гг. до н.э. Он описан в главе о египетской нумерации.
Новейшие исследователи (Арчибальд, Вилейнтнер) опровергают существовавший взгляд, согласно которому египетская наука считалась чисто практической и эмпирической, задачи Ахмеса порой настолько абстрактны, что возникали непосредственно из практики.
Наши четыре действия над числами египтяне выполняли сложением, удвоением и делением пополам.
Удвоение являлось
основной операцией; египетский язык имеет
для этого и особую форму двойственного
числа. Из прямых операций употреблялось
еще только увеличение в десять раз.
Вычитание выполнялось
Греки хотя и
имели действие умножения, в житейской
практике обычно употребляли египетский
метод удвоения. О двух методах
умножения чисел упоминает
В качестве особых арифметических действий ввел удвоение и медитацию в свой учебник неоднократно упоминавшийся самаркандский математик аль-Хорезми (начало XII в), пропагандировавший индийское счисление.
Так как индийцы этих действий не употребляли, то в этом нужно видеть собственную идею аль - Хорезми или влияние Египта через арабов.
Через перевод книги аль - Хорезми в XII в. на латинский язык эти действия вошли впервые европейские руководства Иордана Неморария (XIII в) и через него в монастырские школы. Лишь в конце XV столетия итальянский автор Лука Пачиоли заявляет, что удвоение и раздвоение чисел являются частными случаями умножения и деления и отбрасывает их.
Из представителей
университетской науки первыми
от лишних действий отказались видные
деятели математического
Последний впервые дает определение: "арифметическим действием (от лат. Species) мы называем способ нахождения числа".
Порядок изучения четырех арифметических действий предлагался в разные времена различий. У Леонарда Пизанского действия изучаются в порядке: умножение, сложение, вычитание, деление; у Петра Борги (1484 г) - умножение, деление, сложение, вычитание.
Начать изучение арифметических действий, с умножения было предложено на одном из международных философских конгрессов еще в начале нынешнего столетия. Против предложения резко выступил В.В. Бобынин Кебель (1515 г) подчеркивает равноценность всех четырех действий, Грамматеус (1518 г) отмечает взаимозависимость сложения с умножением, вычитания с делением. Мисрахи (1528 г) рассматривает умножение как частный случай сложения и не включает его в число арифметических действий, так как оно представляет лишь способ сокращенной записи.
Различение арифметических действий по ступеням делает впервые Непир (1550-1617 гг.) в книге "Логистическое искусство", которая была напечатана лишь в 1839 г. Непир считает умножение и деление действиями более высшего порядка, чем сложение и вычитание; третью ступень действий составляют возведение в степень и извлечение корней.
Наиболее древние
индийские памятники
С XV в. в Европе входят в употребление наши способы вычисления, fie требующие зачеркиваний цифр (Начало в Италии). В "алгорифмитическом трактате" Белдоманди (1410 г) отличается от наших способов выполнения арифметических действий только деление. Способ перечеркивания цифр "немецким манером", которого придерживались в Германии, уступил место итальянскому, после того как последний способ приняли виднейшие европейские математики XV в. Гмунден, Пурбах, Региомонтан.
Таким образом, у каждого народа были свои арифметические действия. И все они использовались для выполнения операций над числами. Более тысячи лет, развивалась и утверждалась идея выполнения арифметических действий. Хотя они являются условными действиями, как в математике, так и в практической деятельности людей. Изучение истории развития любого понятия являются интересным не только для учеников, но и для нас самих, а изучение истории развития арифметических действий, безусловно, помогает заинтересовать младших школьников математикой.
Изучение свойств алгебраических операций привело математиков к выводу о том, что основная задача алгебры - изучение свойств операций рассматриваемых не зависимо от объектов, к которым они применяются. И если первоначально алгебра была учением уравнений, то XX веке она превратилась в науку об операциях и их свойствах.
Каждое из четырех
арифметических действий должно прочно
связаться в сознании детей с
теми конкретными задачами, которые
требуют его применения. Смысл
действий и раскрывается главным
образом на основе практических действий
с множествами предметов и
на системе соответствующих
Если по двум
данным числам определяют третье число,
удовлетворяющее некоторым
Все существующие ныне альтернативные системы обучения опираются на теоретико-множественный подход при формировании свойств арифметических действий.
Для объяснения обычно используют множества предметов не ссылаясь на задачи. Не каждый учитель ясно представляет, что изучение арифметических действий и их свойств в процессе работы с задачей усваиваются лучше. Исходя из важности изучения свойств арифметических действий, из-за отсутствия единого подхода к изучению данной проблеме в различных системах обучения возникает необходимость рассмотрения, выяснения и уточнения особенностей формирования понятия свойств арифметических действий.
АКТУАЛЬНОСТЬ ТЕМЫ: изучение и применение свойств арифметических действий является одним из важных тем, во-вторых, многие учителя не акцентируют внимание на использование свойств этих действий.
ЦЕЛЬ ИССЛЕДОВАНИЯ: выявление особенностей формирования понятия свойств арифметических действий у младших школьников.
ОБЪЕКТ ИССЛЕДОВАНИЯ: процесс изучения математики в начальных классах.
ПРЕДМЕТ ИССЛЕДОВАНИЯ: Методические приемы при обучении младших школьников выполнению действий в выражениях.
СТРУКТУРА ИССЛЕДОВАНИЯ:
В течение всех
четырех лет начального обучения
ведется работа по формированию у
детей понятий о натуральном
числе и арифметических действиях.
С самого начала это делается в
неразрывной связи с
Проявляется это в том, что, отрабатывая, скажем, навыки устных вычислений, учителя нередко забывают при этом о необходимости довести до сознания детей теоретическую основу выполняемых операций, не приучают к тому, чтобы в случае появления ошибок в ходе вычислений учащиеся возвращались к рассмотрению тех вопросов теории, которые могут помочь им осознать причину допущенной ошибки и самостоятельно исправить ее. Между тем именно сознательность усвоения - основа, на которой могут быть сформированы действительно прочные навыки уверенных, правильных и быстрых вычислений.
Нарушение требования рассмотрения теории и практики в их единстве проявляется также в том, что на уроках математики нередко перед детьми ставятся в отвлеченной форме вопросы теоретического характера, разучиваются соответствующие определения, "правила" и т.п. в отрыве от их практического применения. При этом приходится сталкиваться и с такими случаями, когда от учащихся требуется знание формулировок, которые либо вовсе не предусмотрены программой, либо должны быть усвоены детьми значительно позднее. Так обстоит дело, например, когда учитель в I классе требует полного ответа на вопрос: "Как называются числа при сложении?" В такой форме знания математической терминологии вообще не следует требовать. (Важно лишь, чтобы дети понимали смысл соответствующих слов, когда их использует учитель, и постепенно включали бы эти термины и в свою речь) Так обстоит дело и тогда, когда учитель уже в I классе требует от учащихся объяснения того, как может быть проверено вычитание с помощью сложения (это материал второго года обучения) и т.п.