Автор: Пользователь скрыл имя, 16 Января 2012 в 21:40, реферат
вознания выросло не сразу - оно медленно произрастало из натурфилософии — философии природы, представляющей собой умозрительное истолкование природы, рассматриваемой в ее целостности. Ранняя древнегреческая натурфилософия досократовского периода активно развивалась, в ионийской школе и явилась по существу первой исторической формой философии вообще. Ионийская школа древнегреческой философии, отличающаяся стихийно-материалистическими взглядами, возникла в VI- V вв. до н. э. в ионийских колониях Греции. Ее представители - крупные мыслители древности: Фалес, Анаксимандр, Анаксимен (Милетская школа), Гераклит Эфесский, Диоген Аполлонийский - руководствовались основной идеей о единстве сущего, происхождении всех вещей из некоторого первоначала (воды, воздуха, огня), а также о всеобщей одушевленности материи.
Интерес к природе как объекту, познания вызвал новый расцвет натурфилософии в эпоху Возрождения. Этот расцвет связан с Дж. Бруно, Б. Телезио, Т. Кампанеллой и другими известными мыслителями. Особое развитие натурфилософия получила в немецкой классической философии Фридриха Шеллинга (1775- 1854), взгляды которого основывались на принципах объективно-идеалистической диалектики природы как живого организма.
Наряду с умозрительными и в определенной степени фантастическими представлениями натурфилософия содержала глубокие идеи диалектической трактовки природных явлений. Поступательное развитие экспериментального естествознания и прежде всего физики привело к постепенному вытеснению натурфилософии естественно-научными знаниями, базирующимися на опытах, на экспериментальных данных. Так в недрах натурфилософии зарождалась физика
Введение………………………………………………………………………………….2
Предмет и структура физики………………………………………………………….3-4
Основные этапы физики……………………………………………………………..5-18
Современная экспериментальная физика………………………………..………..19-23
Заключение………………………………………………………………….…….……24
Список литературы…………………………………………………………………….25
Введение…………………………………………………………
Предмет и структура
физики………………………………………………………….
Основные этапы
физики…………………………………………………………….
Современная экспериментальная
физика………………………………..………..19-23
Заключение……………………………………………………
Список литературы…………………………………
Огромное ветвистое древо естествознания выросло не сразу - оно медленно произрастало из натурфилософии — философии природы, представляющей собой умозрительное истолкование природы, рассматриваемой в ее целостности. Ранняя древнегреческая натурфилософия досократовского периода активно развивалась, в ионийской школе и явилась по существу первой исторической формой философии вообще. Ионийская школа древнегреческой философии, отличающаяся стихийно-материалистическими взглядами, возникла в VI- V вв. до н. э. в ионийских колониях Греции. Ее представители - крупные мыслители древности: Фалес, Анаксимандр, Анаксимен (Милетская школа), Гераклит Эфесский, Диоген Аполлонийский - руководствовались основной идеей о единстве сущего, происхождении всех вещей из некоторого первоначала (воды, воздуха, огня), а также о всеобщей одушевленности материи.
Интерес к природе как объекту, познания вызвал новый расцвет натурфилософии в эпоху Возрождения. Этот расцвет связан с Дж. Бруно, Б. Телезио, Т. Кампанеллой и другими известными мыслителями. Особое развитие натурфилософия получила в немецкой классической философии Фридриха Шеллинга (1775- 1854), взгляды которого основывались на принципах объективно-идеалистической диалектики природы как живого организма.
Наряду с умозрительными
и в определенной степени фантастическими
представлениями натурфилософия содержала
глубокие идеи диалектической трактовки
природных явлений. Поступательное развитие
экспериментального естествознания и
прежде всего физики привело к постепенному
вытеснению натурфилософии естественно-научными
знаниями, базирующимися на опытах, на
экспериментальных данных. Так в недрах
натурфилософии зарождалась
физика
Физика - наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия физики и её законы лежат в основе всего естествознания. Физика относится к точным наукам и изучает количественные закономерности явлений. Слово “физика” происходит от греч. physis - природа.
Первоначально, в эпоху античной культуры наука не была расчленённой и охватывала всю совокупность знаний о природных явлениях. По мере дифференциации знаний и методов исследования из общей науки о природе выделились отдельные науки, в том числе и физика. Границы, отделяющие физику от других естественных наук, в значительной мере условны и меняются с течением времени. В своей основе физика - экспериментальная наука: её законы базируются на фактах, установленных опытным путём. Эти законы представляют собой количественные соотношения и формулируются на математическом языке.
Различают экспериментальную физику - опыты, проводимые для обнаружения новых фактов и для проверки известных физических законов, и теоретическую физику, цель которой состоит в формулировке законов природы и в объяснении конкретных явлений на основе этих законов, а также в предсказании новых явлений. При изучении любого явления опыт и теория в равной мере необходимы и взаимосвязаны. В соответствии с многообразием исследуемых объектов и форм движения физической материи подразделяется на ряд дисциплин (разделов), в той или иной мере связанных друг с другом.
Деление физики на отдельные дисциплины не однозначно, и его можно проводить, руководствуясь различными критериями. По изучаемым объектам физика делится на физику элементарных частиц, физику ядра, физику атомов и молекул, физику газов и жидкостей, физику твёрдого тела, физику плазмы. Другие критерии - изучаемые процессы или формы движения материи. Различают: механические движение, тепловые процессы, электромагнитные явления, гравитационные, сильные, слабые взаимодействия; соответственно в физике выделяют механику материальных точек и твёрдых тел, механику сплошных сред (включая акустику), термодинамику и статистическую механику, электродинамику (включая оптику), теорию тяготения, квантовую механику и квантовую теорию поля. Указанные подразделения физики частично перекрываются вследствие глубокой внутренней взаимосвязи между объектами материального мира и процессами, в которых они участвуют. По целям исследования выделяют иногда также прикладную физику (напр., прикладная оптика).
Особо выделяют в физике учение о колебаниях и волнах, что обусловлено общностью закономерностей колебательных процессов различной физической природы и методов их исследования. Здесь рассматриваются механические, акустические, электрические и оптические колебания и волны с единой точки зрения.
Современная физика
содержит небольшое число фундаментальных
физических теорий, охватывающих все разделы
физики. Эти теории представляют собой
квинтэссенцию знаний о характере физических
процессов и явлений, приближённое, но
наиболее полное отображение различных
форм движения материи в природе.
Основные этапы развития
физики
Становление физики (до 17 в.).
Физические явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию физики в современном смысле этого слова. В греко-римском мире (6 в. до н. э.- 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит, Эпикур, Лукреций), была разработана геоцентрическая система мира (Птолемей), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма.
Итог приобретённых знаний в 4 в. дон. э. был подведён Аристотелем. Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его главным критерием достоверности знания, отдавая предпочтение умозрительными представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки.
Наука возродилась лишь в 15-16 вв. в борьбе со схоластизированным учением Аристотеля. В сер. 16 в. Н. Коперник выдвинул гелиоцентрическую систему мира и положил начало освобождению естествознания от теологии. Потребности производства, развитие ремёсел, судоходства и артиллерии стимулировали научные исследования, опирающиеся на опыт. Однако в 15-16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематическое применение экспериментального метода в физике, и это привело к созданию первой фундаментальной физической теории - классической механики Ньютона.
Формирование физики как науки (нач. 17 - кон. 18 вв.).
Развитие физики как науки в современном смысле этого слова берёт начало с трудов Г. Галилея (1-я пол. 17 в.), который понял необходимость математического описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике, доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в других областях физики. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономических открытий (горы на Луне, спутники Юпитера и др.). Количественное изучение тепловых явлений началось после изобретения Галилеем первого термометра.
В 1-й пол. 17 в. началось успешное изучение газов. Ученик Галилея Э. Торричелли установил существование атмосферное давления и создал первый барометр. Р. Бойль и Э. Mapuomm исследовали упругость газов и сформулировали первый газовый закон, носящий их имя. В. Снеллиус и Р. Декарт открыли закон преломления света. В это же время был создан микроскоп. Значительный шаг вперёд в изучении магнитных явлений был сделан в самом начале 17 в. У. Гильбертом. Он доказал, что Земля является большим магнитом, и первый строго разграничил электрические и магнитные явления.
Основным достижением физики 17 в. было создание классической механики. Развивая идеи Галилея, X. Гюйгенса и других предшественников, И. Ньютон в труде "Математические начала натуральной философии" (1687) сформулировал все основные законы этой науки. При построении классической механики впервые был воплощён идеал научной теории, существующий и поныне. С появлением механики Ньютона было окончательно понято, что задача науки состоит в отыскании наиболее общих количественно формулируемых законов природы.
Наибольших успехов механика Ньютона достигла при объяснении движения небесных тел. Исходя из законов движения планет, установленных И. Кеплером на основе наблюдений Т. Браге, Ньютон открыл закон всемирного тяготения. С помощью этого закона удалось с замечательной точностью рассчитать движение Луны, планет и комет Солнечной системы, объяснить приливы и отливы в океане. Ньютон придерживался концепции дальнодействия, согласно которой взаимодействие тел (частиц) происходит мгновенно непосредственно через пустоту; силы взаимодействия должны определяться экспериментально. Им были впервые чётко сформулированы классические представления об абсолютном пространстве как вместилище материи, не зависящем от её свойств и движения, и абсолютном равномерно текущем времени. Вплоть до создания теории относительности эти представления не претерпели никаких изменений.
В это же время Гюйгенс и Г. Лейбниц сформулировали закон сохранения количества движения; Гюйгенс создал теорию физического маятника, построил часы с маятником.
Началось развитие физической акустики. М. Мерсенн измерил число собственных колебаний звучащей струны и впервые определил скорость звука в воздухе. Ньютон теоретически вывел формулу для скорости звука.
Во 2-й пол. 17 в. начала быстро развиваться геометрическая оптика применительно к конструированию телескопов и других оптических приборов, а также были заложены основы физической оптики. Ф. Гримальди открыл дифракцию света, а Ньютон провёл фундаментальные исследования дисперсии света. С этих работ Ньютона берёт начало оптическая спектроскопия. В 1676 О. К. Рёмер впервые измерил скорость света. Почти одновременно возникли и начали развиваться две различные теории о физической природе света - корпускулярная и волновая. Согласно корпускулярной теории Ньютона, свет - это поток частиц, движущихся от источника по всем направлениям. Гюйгенс заложил основы волновой теории света, согласно которой свет - это поток волн, распространяющихся в особой гипотетической среде - эфире, заполняющем всё пространство и проникающем внутрь всех тел.
Таким образом, в 17 в. была построена в основном классическая механика и начаты исследования в других областях физики: в оптике, учении об электрических и магнитных явлениях, теплоте, акустике.
В 18 в. продолжалось развитие классической механики, в частности небесной механики. По небольшой аномалии в движении планеты Уран удалось предсказать существование новой планеты - Нептун (открыта в 1846). Уверенность в справедливости механики Ньютона стала всеобщей. На основе механики была создана единая механическая картина мира, согласно которой всё богатство, всё качественное многообразие мира - результат различия в движении частиц (атомов), слагающих тела, движении, подчиняющемся законам Ньютона. Эта картина многие годы оказывала сильнейшее влияние на развитие физики. Объяснение физических явления считалось научным и полным, если его можно было свести к действию законов механики.
Важным стимулом для развития механики послужили запросы развивающегося производства. В работах Л. Эйлера и др. была разработана динамика абсолютно твёрдого тела. Параллельно с развитием механики частиц и твёрдых тел шло развитие механики жидкостей и газов. Трудами Д. Бернулли, Эйлера, Ж. Лагранжа и др. в 1-й пол. 18в. были заложены основы гидродинамики идеальной жидкости - несжимаемой жидкости, лишённой вязкости и теплопроводности. В "Аналитической механике" (1788) Лагранжа уравнения механики представлены в столь обобщённой форме, что в дальнейшем их удалось применить и к немеханическим, в частности электромагнитным, процессам.