Автор: Пользователь скрыл имя, 08 Июля 2013 в 18:25, контрольная работа
Биологические методы исследования свойств сырья и продуктов питания основаны на скармливании изучаемого белка живому организму с последующим выявлением его реакции. Основными показателями оценки при этом являются привес (рост животных) за определённый период времени, расход белка и энергии на единицу привеса, коэффициенты перевариваемости и отложения азота в теле, доступность аминокислот. Биологические методы исследования биологической ценности белков можно классифицировать на рост весовые и балансовые. Эти методы широко используют для определения различных индексов биологической ценности белков.
I. Биологические методы исследования. Сенсорные методы исследования; их механизмы и виды; отличие органолептического и сенсорного методов исследования. Качественный и количественный сенсорный анализ пищевых продуктов. Связь сенсорных показаний зрения, обоняния, вкуса с химическими характеристиками состава материалов («химические чувства»).
II. Содержание основных микроэлементов в пищевых продуктах и методы определения главных токсикантов из них.
III. Определить величину предельного диффузионного тока ионов цинка при контроле его содержания в пищевом консервированном продукте полярографическим методом, если концентрация цинка составляет С Zn2+=2,5x10-3.
IV. Титриметрический метод определения крахмала. Реакции. Расчет результатов анализа.
V. Полярографический метод определения железа, марганца, кобальта в винах, напитках, экстрактах. Способы пробоподготовки
VI. Определение макроэлементов пищевых объектов методом комплексонометрического титрования. Реакции. Расчет результатов анализа.
VII. Список литературы .
В последнее время была открыта способность этерифицированных глюкоманнанов, извлеченных из внутренних оболочек дрожжей специально подобранных штаммов, связывать микотоксины. Эта работа имела почти 20-летнюю историю, приведшую к созданию препарата Микосорб. В его составе отсутствуют цеолиты, бентониты, алюмосиликаты. Норма ввода колеблется от 0,2 до 1 кг/т в зависимости от степени токсичности корма. К тому же Микосорб адсорбирует не только афлатоксины, но и ряд других опасных токсинов, включая Т-2, ДОН, охратоксин и др.
Определение микотоксинов при их совместном присутствии в пищевых продуктах.
Одно из ведущих мест в ряду приоритетных
загрязнителей пищевых
Для совместного определения афлатоксина В1, зеараленона, Т-2 токсина и дезоксиниваленола, содержащихся в одних и тех же продуктах, предложено использовать смесь ацетонитрила и раствора хлорида калия с массовой долей 4% в соотношении 9:1. При разделении микотоксинов на хроматографических пластинках «Силуфол» с силикагелевым покрытием хроматографирование проводилось смесью растворителей гексан : ацетон (1:1). При этом величины Rf: для афлатоксина В1 - 0,45%, , для зеараленона - 0,75%, для Т-2 токсина - 0,4%, для дезоксиниваленола 0,42%. В отдельных случаях предложено использование подтверждающих тестов - спиртовый раствор хлорида алюминия для зеараленона и водный раствор азотной кислоты для всех остальных, при этом флуоресценция зеараленона меняется с зеленоватой на ярко-голубую, а остальных с оттенков голубого и синего на ярко-желтую. Такой подход позволил ускорить выдачу результата и экономно расходовать реактивы и хроматографические пластинки.
III . Определить величину предельного диффузионного тока ионов цинка при контроле его содержания в пищевом консервированном продукте полярографическим методом, если концентрация цинка
составляет С Zn2+=2,5x10-3моль/л.
Методы анализа, основанные на расшифровке поляризационных кривых (вольтамперограмм), получаемых в электролитической ячейке с поляризующимся индикаторным электродом и неполяризующимся электродом сравнения, называют вольтамперометрическим. Вольтамперограмма позволяет одновременно получить качественную и количественную информацию о веществах, восстанавливающихся или окисляющихся на микроэлектроде (деполяризаторах), а также о характере электродного процесса.
В качестве поляризующегося микроэлектрода часто применяют ртутный капельный электрод, а сам метод называют в этом случае полярографией, следуя термину, который предложил Я. Гейровский, разработавший этот метод в 1922 г.
При небольшом потенциале катода сила тока сначала медленно увеличивается с возрастанием потенциала – это так называемый остаточный ток, его значение имеет порядок 10-7 А. По достижении потенциала восстановления на катоде начинается разряд ионов, определяемый диффузией, и сила тока резко возрастает, а затем становится постоянной – это предельный диффузионный ток.
Принципиальная схема полярографической установки: анализируемый раствор 1 находится в электролизере 2, на дне которого имеется слой ртути 3, являющийся анодом. Катодом служит ртутный капельный электрод 4, соединенный с резервауром ртути 5. Через электролизер протекает ток, напряжение которого, подаваемое на электроды, можно плавно менять с помощью реохорда или делителя напряжения 7 и измерять при этом гальванометром 6 силу тока, проходящего через раствор.
Зависимость тока I от приложенного напряжения Е при обратимом электродном процессе передается уравнением полярографической волны:
Е = Е1/2 + (RT / nF) ln( Id – I ) / I, (1)
Где Е1/2 – потенциал полуволны; Id – диффузионный ток.
При I = Id / 2 уравнение (1) переходит в
Е = Е1/2 . (2)
Это соотношение показывает независимость потенциала полуволны от тока и, следовательно, от концентрации восстанавливающегося иона. Потенциал полуволны является, таким образом, качественной характеристикой иона в растворе данного фонового электролита, и определение потенциала полуволны составляет основу качественного полярографического анализа.
Количественный
Id = 605zD1/2 m2/3 t1/6 c (3)
Где z - заряд иона; D – коэффициент диффузии; m – масса ртути, вытекающей из капилляра за 1 с, мг; t – время образования капли (периода капания), с.
В практике количественного полярографического анализа коэффициент пропорциональности межу концентрацией вещества и силой диффузионного тока обычно устанавливают с помощью стандартных растворов. При постоянных условиях полярографирования D, m, и t постоянны, поэтому уравнение (3) переходит в
Id = k c . (4)
D=0,72x10-5 см2/с;
m=3 мг;
t=4 сек
z=2
с=605*2*(0,72х10-5)1/2 (3*10-6)2/3 41/6=8,51x10-4 А
Id = 2,5x10-3* 8,51x10-4=2,1x10-6A=2,1мк А
IV. Титриметрический метод определения крахмала. Реакции.
Расчет результатов анализа.
Титриметрический анализ (титрование) — методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объёма раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. Титрование — процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.
Гидролиз полисахаридов является стадией предшествующей дальнейшему их анализу.
Гидролиз крахмала под
действием кислот вызывает ослабление
и разрыв ассоциативных связей между
макромолекулами амилазы и
К недостатку этого метода
следует отнести возможность
образования продуктов
Крахмал гидролизируется
и под действием
Для определения большого
множества углеводных соединений и
продуктов превращений
HOH2C O CHO
СНО
|
СН H OH
||
СН О HOH2C CHO
|– CHO – H2O
CH2OH образование оксиметил-
HOH2C OH фурфурола
Для определения моносахаридов используют их восстанавливающую способность. Вначале их извлекают из пищевых продуктов 80%-ным этиловым спиртом. Спиртные экстракты упаривают под вакуумом разбавляют горячей водой и фильтруют. При анализе продуктов, относительно богатых белками и фенольными соединениями, фильтрат дополнительно обрабатывают нейтральным раствором ацетата свинца, избыток удаляют сульфатом, фосфатом или оксалатом натрия. Осадок отфильтровывают, а в фильтрате определяют редуцирующие сахара титриметрическим, амперометрическим, хроматографическим, рефрактометрическим и др. методами анализа.
При титриметрическом методе анализа к аликвотной части экстракта прибавляют 25 см3 щелочного раствора гексацианоферрата (III) калия, нагревают и титруют раствором глюкозы в присутствии индикатора метилового голубого до исчезновения синей окраски. Содержание (%) определяют по формуле:
где – V1 – количество стандартного раствора глюкозы, пошедшее на титрование 25 см3 щелочного раствора гексацианоферрата (III) калия, см3;
V2 – количество стандартного раствора глюкозы, пошедшее на титрование избытка гексацианоферрата (III) калия, см3;
Vк – объем экстракта, см3;
Vа – аликвотная часть экстракта, см3;
1,6 – масса глюкозы в 1 см3 стандартного раствора, мг;
н – навеска объекта исследования, мг.
V. Полярографический метод определения железа, марганца, кобальта в винах, напитках, экстрактах. Способы пробоподготовки.
В последнее время, особенно в связи с загрязнением атмосферы, большое значение приобретают вольт амперометрические методы анализа, и в частности полярография, основанная на использовании процессов поляризации, возникающих на микроэлектроде. Подавляющее число неорганических и органических соединений способны к восстановлению на ртутном капельном электроде. Поэтому полярографический анализ применяется для определения белков, аминокислот, углеводов, витаминов, а также микроэлементов, следов тяжелых металлов в сырье и пищевых продуктах: сахаре, картофеле, винах, кондитерских изделиях и др. При этом возможно одновременное определение нескольких веществ при их совместном присутствии.
Полярографический метод
характеризуется большой
Полярография — физико-
В качестве поляризующегося
электрода обычно используют
капельный ртутный электрод, который
может служить как катодом
(при определении
Получение вольтамперных
кривых производят при помощи
полярографов, простых, с визуальным
отсчетом величины тока и