Линейная алгебра

Автор: Пользователь скрыл имя, 28 Декабря 2011 в 21:24, курс лекций

Описание работы

Аксиомы линейного пространства и их следствия.

I. Бинарная операция — операция сложения. " x,y ÎL по некоторому правилу $! x+y ÎL.

Аксиомы:

1. " x,y ÎL: x+y=y+x - коммутативна

2. " x,y,z Î L : (x+y)+z=x+(y+z) - ассоциативна.

3. $! Q(нулевой) Î L : "x x+Q=Q+x=x

4. "x Î L $! (-x) ÎL: x+(-x)=Q

Вывод: (L,+) - абелева группа.

Работа содержит 1 файл

Ответы на экзаменационные билеты по Кацману.docx

— 65.04 Кб (Скачать)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Линейные  операторы. Изменение матрицы линейного  оператора при переходе к новому базису.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Подобные  матрицы. Эквивалентность подобия  матриц существованию общего линейного  оператора.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Характеристический  многочлен матрицы и оператора. Теорема о совпадении характеристических многочленов подобных матриц.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Инвариантные  подпространства. Лемма 2.1.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Собственные векторы и собственные числа  линейного оператора               (теорема 2.5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
---
 
  1. Теорема о размерности подпространства  собственных векторов.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Теорема о линейной независимости систем собственных векторов, отвечающих различным  собственным числам.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Операторы простой структуры критерий ОПС.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Линейные  операторы вещественных и комплексных  пространств  (теорема 2.7).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Евклидовы и унитарные пространства. Аксиомы  скалярного произведения. Длина вектора.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Неравенство Коши-Буняковского.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
---
 
 
 
 
 
  1. Неравенство Миньковского.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Ортогональные системы векторов (теорема о линейной независимости).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Метод ортогонализации  Грамма-Шмидта.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Теорема о существовании ортонормированного базиса.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Матрица Грамма системы векторов. Выражение  скалярного произведения с помощью  матрицы Грама.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Теорема об определителе матрицы Грама.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Ортогональное дополнение. Теорема о свойствах  ортогональных дополнений (утверждение 2.1, теорема 2.13).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Угол между  вектором и подпространством. Ортогональная  проекция и ортогональная составляющая.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Сопряженный оператор. Теорема о существовании  и единственности сопряженного оператора.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Свойства  операции сопряжения операторов.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Нормальные  операторы и их свойства (леммы 2.5 - 2.9).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Теорема о строении нормального оператора  в унитарном пространстве (теорема 2.16).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Теорема о строении нормального оператора  в евклидовом пространстве (теорема 2.17).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Ортогональные операторы (леммы 2.10 и 2.11).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Теорема о строении ортогонального оператора  в унитарном пространстве.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Теорема о строении ортогонального оператора  в евклидовом пространстве.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Самосопряженные операторы. Теорема о строении самосопряженного оператора (теорема 2.20 и теорема 2.21).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Квадратичные  формы. Матрица квадратичной формы. Эквивалентные формы. Ранг формы.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Линейная алгебра