Автор: Пользователь скрыл имя, 20 Марта 2012 в 11:41, контрольная работа
Но натурный эксперимент в экономике осуществить очень трудно, ведь любая экономическая деятельность связана с людьми, а пробовать на людях разные варианты управления, проверять их последствия опасно. Вдобавок люди ведут себя в условиях эксперимента не так, как в реальной действительности. К тому же экономические эксперименты в натуре весьма дорогостоящи и продолжительны, в большинстве случаев субъект управления не имеет возможности затягивать принятие решений, ожидая пока они будут опробованы посредством эксперимента.
РОЛЬ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ В УПРАВЛЕНИИ ЭКОНОМИЧЕСКИМИ ОБЪЕКТАМИ И ПРОЦЕССАМИ 3
1.ВВЕДЕНИЕ В ТЕОРИЮ ПРИНЯТИЯ РЕШЕНИЙ 3
1.1 Краткая историческая справка 3
1.2 Этапы принятия решений 5
1.3 Общие подходы и рациональные процедуры принятия решений 6
1.4 Математическая постановка задачи принятия решения 8
2. КЛАССИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ЭКСТРЕМАЛЬНЫХ ЗАДАЧ ПРИНЯТИЯ РЕШЕНИЙ 10
2.1 Экстремум функции одной переменной 10
2.2 Метод неопределенных множителей Лагранжа 12
2.3 Особенности реальных задач 14
3.НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ 15
3.1 Области применения нелинейного программирования 15
3.2 Общая характеристика методов решения задач нелинейного программирования 16
3.3 Методы одномерной оптимизации 19
3.4 Методы многомерной оптимизации 23
4.ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ 27
4.1 Краткий исторический очерк 28
4.2 Типичные задачи линейного программирования 28
4.3Постановка задачи линейного программирования 30
5.ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ 32
5.1 Основные понятия 32
5.2 Математическое описание. Функциональное уравнение Беллмана. 33
5.3 Общая процедура решения задач методом динамического программирования 35
5.4 Задачи, решаемые методом динамического программирования 40
6. ИГРОВЫЕ МЕТОДЫ В ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ 43
6.1 Постановка задачи 44
6.2 Классификация игровых задач 47
7.ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ 47
7.1 О некоторых особенностях применения экономико-математических моделей и компьютеров в управлении 50
7.1 Основные виды экономико-математических моделей, применяемые в управлении 56
СОВРЕМЕННЫЙ ЭТАП РАЗВИТИЯ ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ 63
Литература 66
В этом методе используется градиент целевой функции, шаги совершаются по направлению наибыстрейшего уменьшения целевой функции, что, естественно, ускоряет процесс поиска оптимума.
Идея метода заключается в том, что находятся значения частных производных по всем независимым переменным – ∂Q / ∂uι , ι = 1, n , которые определяют направление градиента в рассматриваемой точке и осуществляется шаг в направлении обратном направлению градиента, т.е. в направлении наибыстрейшего убывания целевой функции (если ищется минимум). Итерационный процесс имеет вид
где параметр αk ≥ 0 задает длину шага.
Алгоритм метода градиента при непосредственном его применении включает в себя следующие этапы.
Важной задачей в этом методе является выбор шага. Если размер шага слишком мал, то движение к оптимуму будет долгим из-за необходимости расчета целевой функции и ее частных производных в очень многих точках. Если же шаг будет выбран слишком большим, то в районе оптимума может возникнуть "рыскание", которое либо затухает слишком медленно, либо совсем не затухает. На практике сначала шаг выбирается произвольно. Если окажется, что направление градиента в точке u1 существенно отличается от направления в точке u2, то шаг уменьшают, если отличие векторов по направлению мало, то шаг увеличивают. Изменение направления градиента можно определять по углу поворота градиента рассчитываемого на каждом шаге по соответствующим выражениям.
Итерационный процесс поиска обычно прекращается, если выполняются неравенства uk −uk −1 ≤ ε, Q(uk )−Q(uk −1 ) / Q(uk −1 )≤ δ, ∂Q(uk )/ ∂u ≤ γ , где ε, δ, γ – заданные числа.
Недостатком градиентного метода является то, что при его использовании можно обнаружить только локальный минимум целевой функции. Для нахождения других локальных минимумов поиск необходимо производить из других начальных точек.
3.4.3 Метод наискорейшего спуска
При применении метода градиента
на каждом шаге вычисляются значения
всех частных производных
Таким образом, в начальной точке u0 определяется градиент целевой функции δQ/δui и, следовательно, направление ее наибыстрейшего убывания; далее делается шаг спуска в этом направлении. Если значение целевой функции уменьшились, то делается следующий шаг в этом же самом направлении. Процедура повторяется до тех пор, пока в этом направлении не будет найден минимум, после чего только вычисляется градиент и определяется новое направление наибыстрейшего убывания целевой функции.
По сравнению с методом
градиента метод наискорейшего
спуска оказывается более выгодным
из-за сокращения объема вычислений. Чем
менее резко изменяется направление
градиента целевой функции, тем
выгоднее использовать метод наискорейшего
спуска, т.е. вдали от оптимума. Вблизи
оптимума рассматриваемый метод
автоматически переходит в
3.4.4 Метод квантования симплексов
Симплексный метод относится к группе безградиентных методов детерминированного поиска. Основная идея метода заключается в том, что по известным значениям функции в вершинах выпуклого многогранника, называемого симплексом, находится направление, в котором требуется сделать следующий шаг, чтобы получить наибольшее уменьшение (увеличение) критерия оптимальности. Примером симплекса на плоскости является треугольник, в трехмерном пространстве – четырехгранная пирамида, в n-мерном пространстве – многогранник с n + 1 вершиной. Основным свойством симплекса является то, что против любой из вершин симплекса расположена только одна грань, на которой можно построить новый симплекс, отличающийся от прежнего расположением новой вершины, остальные вершины обоих симплексов – совпадают.
Наглядную иллюстрацию симплексного метода удобнее рассматривать на примере задачи отыскания минимального значения целевой функции двух независимых переменных (рис. 3.11). Алгоритм поиска заключается в следующем.
Исключение из рассмотренных вершин симплексов с наибольшим значением целевой функции приводит к сходимости процесса к минимальному значению.
При использовании симплексного метода возможно зацикливание вблизи оптимума, которое приводит к тому, что при исключении вершины образуется не новый, а предыдущий симплекс. Для устранения зацикливания достаточно изменить размеры симплекса в сторону его уменьшения, т.е. уменьшить шаг спуска в районе оптимума. Если зацикливание возникает вновь, то размеры симплекса уменьшаются до тех пор, пока не будет достигнута требуемая точность определения оптимума.
Критерием окончания поиска
могут служить размеры
3.4.5 Поиск при наличии "оврагов" целевой функции
Если целевая функция имеет "овраги", то рассмотренные методы поиска экстремума этой функции малоэффективны, так как будет найдено дно "оврага", и далее применяемые методы застрянут на этом дне. Поэтому для решения оптимальных задач, в которых целевая функция имеет особенности типа "оврагов" разработаны специальные методы. Одним из таких методов является метод шагов по "оврагу", алгоритм которого заключается в следующем.
Процесс поиска продолжается до тех пор, пока значение целевой функции во вновь найденной критической точке uk+1 Q (uk+1) не окажется больше, чем в предыдущей точке uk – Q (uk). Минимум в этом случае находится между точками uk–1 и uk+1. Далее процесс поиска можно повторить, но уже с меньшими "шагами по оврагу", пока не будет достигнута требуемая точность.
В результате поиска могут возникнуть различные ситуации. Например, когда все переменные примерно одинаково влияют на значение оптимизируемой функции, но, тем не менее, "овраг" существует. В этом случае для поиска состояния u01 можно сделать любой шаг из начального состояния u0, далее поиск продолжается по описанному выше алгоритму.
Линейное программирование
является составной частью задач
математического
Математические исследования
отдельных экономических
В 1936 году появилась первая публикация американского экономиста и статистика В.В. Леонтьева о межотраслевой модели производства и распределении продукции США, которая вошла в литературу под названием метода анализа экономики "затраты – выпуск".
В 1938 году русский математик Л.В. Канторович, изучая практическую задачу выбора наилучшей производственной программы загрузки лущильных станков, отметил, что эта задача на максимум при ограничениях в виде линейных неравенств весьма своеобразна и не поддается решению известными средствами классического анализа. Эта задача не является случайной, как стало ясно, а является типичным представителем нового, не исследованного класса задач, к которым приводят различные вопросы нахождения наилучшего производственного плана. В 1939 году появилась работа Л.В. Канторовича
"Математические методы
организации и планирования
Термин "линейное программирование" появился впервые только в 1951 году в работах Дж. Б. Данцига и Т. Купманса (США). В эти же годы Дж. Б. Дансингом разработан эффективный метод решения задач линейного программирования – симплекс метод.
Наиболее эффективно линейное программирование развивалось в СССР и США в 1955 – 65 годах, именно в этот период оно было одним из наиболее "модных" разделов прикладной математики. В настоящее время линейное программирование стало важным инструментом современной теоретической и прикладной математики.
Задача об оптимальном выпуске продукции
Эта задача возникает при составлении планов выпуска продукции предприятием и поэтому имеет важное практическое значение.
Информация о работе Математические методы в принятии решений