Прокладка трубопроводов в условиях болот

Автор: Пользователь скрыл имя, 04 Марта 2013 в 20:02, реферат

Описание работы

При глубине торфяного слоя до 1 м с подстилающем основанием, имеющим высокую несущую способность, разработка траншеи осуществляется с предварительным удалением торфа бульдозером или экскаватором. При этом глубина траншеи должна быть на 0,15-0,2 м ниже проектной отметки. При использовании экскаватора для выторфовывания протяженность создаваемого фронта работ должна быть 40-50 м. На болотах большой протяженности с низкой несущей способностью траншею следует разрабатывать зимой, после предварительного промораживания.

Содержание

1. Основные принципы проектирования и расчета подземных трубопроводов на болотах и обводненной местности
1.1. Методы расчета трубопроводов и их взаимосвязь с методами расчета основания трубы по предельным состояниям
1.2. Методы расчета сопротивления грунта перемещениям трубы и анализ возможности их применения для торфяных оснований
1.3. Основные положения по расчету оснований трубопроводов

2. Характеристика и исследование болот для строительства трубопроводов
2.1. Краткая характеристика торфов и торфяных болот
2.2. Инженерно-геологические изыскания на болотах
2.3. Перемещение поверхности болот при изменении уровня грунтовых вод в торфяной залежи
2.4. Перемещение сооружений на болотах при изменении уровня грунтовых вод в торфяной залежи
2.5. Метод полевого определения модуля деформации торфа с учетом изменения уровня грунтовых вод в торфяной залежи
2.6. Промерзание болот в зимнее время. Прочность мерзлого торфа
2.7. Критические нагрузки на торфяную залежь. Проходимость гусеничной техники по болотам в талом состоянии

3. Отдельные вопросы проектирования подземных трубопроводов в условиях болот и обводненной местности
8.1. Методика по определению сопротивления основания перемещениям забалластированного трубопровода (формульное изложение)
8.2. Расчет забалластированного трубопровода с произвольным расположением оси в пределах болота
8.3. Последствия отступлений при строительстве от проектного прямолинейного положения трубопровода на болоте
8.4. О продольной устойчивости магистральных газопроводов на болотах и обводненных грунтах. Причины появления участков в непроектном положении
8.5. О целесообразности устройства компенсаторов на болотах в слое торфа
8.6. Влияние толщины обратной засыпки над трубой на НДС трубопровода с произвольным расположением оси в профиле
8.7. Влияние прилегающих к углу поворота участков на НДС трубопровода с произвольным расположением оси в профиле
8.8. Влияние характеристик грунтового основания на результаты расчета подземных трубопроводов
8.9. Определение характеристик грунтов при инженерно-геологических изысканиях для расчета подземных трубопроводов
8.10. Пространственное положение и перемещения подземных трубопроводов. Реакция грунтового основания
8.11. Расчет подземных трубопроводов, закрепленных на проектных отметках дополнительными конструкциями
4. Прокладка магистральных трубопроводов на переходах через болота наземно в насыпи
9.1. Обоснование целесообразности наземной прокладки в насыпи
9.2. Состояние вопроса по проектированию трубопроводов в насыпи
9.3. Расчетная схема основания и метод расчета трубопровода в насыпи
9.4. Влияние насыпи на перемещения наземного трубопровода. Расчет осадки насыпи
9.5. Расчет вертикальных перемещений наземного в насыпи трубопровода

5. Способы прокладки с учетом напряженно-деформированного состояния трубы при эксплуатации
10.1. Особенности состояния трубопроводов на болотах
10.2. Новые способы прокладки и их техническое обоснование
10.3. Расчет трубопроводов с учетом неравномерной осадки трубы при эксплуатации

6. Опытно-промышленная проверка нового способа прокладки трубопроводов на болотах наземно в насыпи
11.1. Строительство опытно-промышленного участка
11.2. Осадка трубы и состояние насыпи при эксплуатации
11.3. Напряженно-деформированное состояние трубопровода с учетом неравномерной осадки трубы и насыпи
11.4. Технико-экономическая эффективность нового способа прокладки

Список литературы

Работа содержит 1 файл

РЕФЕРАТ (4).doc

— 2.58 Мб (Скачать)

 

ПРИЛОЖЕНИЯ

 

Приложение 1

 

ДАННЫЕ И ПРИМЕР ПОДБОРА КОНСТРУКЦИИ  ДЕРЕВЯННОГО ПОПЕРЕЧНОГО НАСТИЛА  ОСНОВАНИЯ ДЛЯ УВЕЛИЧЕНИЯ НЕСУЩЕЙ  СПОСОБНОСТИ ЗАБОЛОЧЕННОГО ГРУНТА ПРИ ВРЕМЕННОМ ПРОЕЗДЕ ГУСЕНИЧНОГО  И КОЛЕСНОГО ТРАНСПОРТА

 

А. Гусеничный транспорт

 

I. Размеры наиболее распространенных типов деревянных поперечин, а также допускаемые нагрузки Q1 на одну поперечину в зависимости от ее геометрических размеров и с учетом несущей способности разных типов болот представлены в табл. 24 и 25.

 

Таблица 24

 

Тип болота

Допускаемое сопротивление грунта Rg, кгс/см2

Допускаемая нагрузка на одну поперечину, кг

(размеры: длина×диаметр, см)

 

 

400×14

400×16

600×14

600×16

I

0,6

2850

3150

4200

4800

II

0,33

1900

2100

2800

3200

III

0,07

400

450

600

700


 

Таблица 25

 

Тип болота

Влажность по

отношению к весу

сухого торфа, %

Плотность

Сила

сцепления,

кгс/см2

Наибольшее возможное удельное сопротивление грунта, R0, кгс/см2

Допустимое удельное сопротивление грунта с коэффициентом прочности 0,6 Rg , кгс/см2

I

200 - 400 (слабоувлажненный)

Плотный

0,3 - 0,5

0,95

0,6

II

600 - 1000 (увлажненный)

Рыхлый

0,2 - 0,3

0,52

0,33

III

Более 1500

Жидкий

0,04 - 0,12

0,12

0,07


 

2. Выбор количества поперечин  соответствующего типа производят  в следующем порядке:

определяют тип болота (например, II типа);

согласно типу болота (табл. 24) определяют допустимое удельное сопротивление грунта Rg (для примера: Rg = 0,33 кгс/см2);

устанавливают типы транспортных средств (например, тракторы Т-130 и Т-100МГП);

определяет величину удельного  давления транспортного средства на грунт Р (в примере для Т-140 Р = 0,42 кгс/см2, для Т-100 Р = 0,48 кгс/см2);

выбирают путем сравнения максимальную величину удельного давления на грунт  транспортного средства Pmax (для нашего примера Pmax = 0,48 кгс/см2);

определяют величину удельного давления, воспринимаемого настилом, от транспортных средств Р как разность максимальной величины удельного давления Pmax и допустимого удельного сопротивления грунта , т.е. (для примера; кгс/см2);

устанавливает общую величину нагрузки (в кг), передаваемой на поперечный настил основания , как произведение величины удельного давления, воспринимаемого настилом , на площадь опорной поверхности прикладываемой максимальной нагрузки S, т.е. . Значение S может быть определено из технической характеристики транспортных средств (для нашего примера кгc/см2 × 23750 см2 =3562 кг);

определяют наличие на складе или  возможность изготовления поперечин  определенного размера (например, имеем  поперечины размером 400×16 см и 600×16 см);

с помощью табл. 24 определяют необходимое количество поперечин N нужного типа путем деления общей величины нагрузки на настил на допустимую нагрузку на одну поперечину Q, т.е. . Частное от деления, округленное в остатке до целого числа в сторону увеличения, показывает необходимое количество поперечин N для усиления несущей способности заболоченного грунта (в нашем примере: для болота II типа и поперечин 400×16 см  
N = 3500 кг : 2800 кг = 1,2 ≈ 2 поперечины; для поперечин 600×16 см N = 3500 кг : 3200 = 1,1 ≈ 2 поперечины), т.е. минимально необходимое количество поперечин под опорную часть транспортного средства.

3. Оптимальное количество и частоту  расположения поперечин, т.е. расстояние l между ними по оси дороги, принимают из следующих соображений:

оптимальное расстояние между поперечинами находят из условия , где L - длина опорной поверхности гусеницы, иными словами, по длине опорной поверхности гусеницы должны располагаться не менее трех поперечин (в нашем примере для тракторов Т-100 и Т-140 эти расстояния соответственно составляют: м и м, оптимальное количество поперечин - 3);

максимально возможное число поперечин  в одном ряду, воспринимающих внешнюю  нагрузку, определяют из условия сплошного  их расположения, без промежутков, на всей длине опорной поверхности  гусениц. Так, для тракторов Т-100 и Т-140 максимальное количество поперечин при диаметре поперечин 14 см равно 17 - 18 шт., при диаметре 16 см - 15 - 16 шт.;

если количество поперечин, необходимое  для восприятия внешней нагрузки, больше максимально допустимого, то для пропуска машин необходимо устанавливать второй (и если необходимо, третий) ряд продольного (поперечного) настила или удлиненные в 1,5 - 2 раза поперечины с большим диаметром.

 

Б. Колесный транспорт

 

1.  Размеры наиболее распространенных типов деревянных поперечин, а также допускаемые нагрузки на одну поперечину Q1 в зависимости от ее геометрических размеров и с учетом несущей способности разных типов болот указаны в табл. 24.

2. Выбор количества поперечин для колесного транспорта производят следующим образом:

определяют тип болота (например, II тип);

определяют марки колесных транспортных средств (для расчета берут автомобиль с наибольшей осевой нагрузкой, например КрАЗ-255 с прицепом 2Р-15);

определяют расчетную полную нагрузку на ось QΣ.O (для нашего примера у КрАЗ-255 с прицепом 2Р-15 QΣ.O = 11000 кг);

определяют наличие на складе или  возможность изготовления поперечин  определенного размера (например, имеем  поперечины размером 600×16 см);

с помощью табл. 24 определяют необходимое  количество поперечин N требуемого размера путем деления расчетной полной нагрузки на ось QΣ.O на допустимую нагрузку на одну поперечину Q1, т.е. . Частное от деления, округленное в остатке до целого числа в сторону увеличения, показывает необходимое количество поперечин N для повышения несущей способности заболоченного грунта (в нашем примере: для болота II типа и поперечин размером 600×16 см N = 11000 кг : 3200 кг = 3,4 ≈ 4 поперечины), т.е. минимально необходимое количество поперечин, располагаемое в зоне действии осевой нагрузки колесного транспорта, равной примерно базе автомобиля L (для нашего примера база КрАЗ-255 равна примерно 5 м).

3. Оптимальную частоту расположения поперечин, т.е. расстояние между поперечинами l, определяют путем деления базы L на полученное расчетом количество поперечин N, т.е. l = L : N 
(для нашего примера l = 5 м : 4 ≈ 1,2 м).

Максимально возможное количество поперечин в одном ряду определяют из условия сплошного их расположения, когда l = N d, где d - диаметр поперечины.

Если L < N d, то принимается решение или об устройстве дополнительных рядов (продольный, поперечный и т.д.) основания, или об удлинении поперечин, с одновременным увеличением их диаметра в 1,5 - 2 раза.

4. Для пропуска колесных машин,  независимо от расчетного количества  поперечин и расстояния между ними, необходимо обязательное устройство колейного или сплошного покрытия из сборно-разборных деревянных щитов, скрепленных бревен, брусьев и пр.

 

Примечание. Для обводненных  участков необходимо учитывать, чтобы  верх проезжей части находился не менее чем на 0,2 м выше уровня поверхностных вод. Для достижения этого условия принимаются решения об устройстве дополнительного слоя хворостяной выстилки под поперечный настил основания или об устройстве дополнительного ряда продольного настила основания и другие решения.

 

Приложение 2

 

МЕТОДИКА И ПРИМЕР РАСЧЕТА КОНСТРУКЦИЙ ВРЕМЕННОЙ ДОРОГИ

ИЗ ЛЕСОМАТЕРИАЛА В ЗАБОЛОЧЕННОЙ МЕСТНОСТИ

 

Методика определения несущей  способности и осадки торфяной залежи

 

I. На основании данных изысканий определяют тип торфа и его физико-механические свойства, включая:

α - степень разложения торфа, %;

А0 - удельное сопротивление сжатию единицы площади торфяного основания, кгс/см2;

В0 - силу сопротивления срезу, отнесенную на 1 см длины периметра П штампа, кгс/см;

К - коэффициент деформируемости торфяной залежи, см;

а - коэффициент уплотнения торфа, см2/кг.

Значения указанных величин  для некоторых видов торфа  приведены в табл. 26.

 

Таблица 26

 

Вид торфа

Степень разложения

Весовая влажность

W, %

А0,

кгс/см2

В0,

кгс/см

К, см

a,

кгс/см2

Р0,

кгс/см2*

Осоковый

45 - 50

450 - 470

0,19

4,75

4,7

0,10

0,23

"

30

450 - 520

0,46

6,62

4,85

0,10

0,53

"

25 - 30

430 - 520

0,10

5,00

6,35

0,13

0,15

"

30 - 35

730 - 900

0,18

4,56

7,20

0,15

0,24

"

20 - 25

1010 - 1150

0,16

6,40

7,70

0,16

0,22

Оcоково-топяной

30

680

0,18

4,56

3,46

0,08

0,23

"

40

1000

0,15

3,50

4,0

0,09

0,19

Гипновый

25 - 30

570

0,376

9,42

6,3

0,13

0,47

"

20

1000

0,324

8,10

6,2

0,12

0,40

"

25

1000

0,36

8,95

6,9

0,14

0,45

Гипново-топяной

25 - 30

570

0,38

8,72

6,5

0,13

0,47

Топяной

15 - 30

450 - 610

0,40

8,50

6,3

0,13

0,48

Осоково-лесной

45 - 50

450 - 520

0,18

4,60

4,50

0,10

0,23

Древесно-осоковый

35 - 40

450 - 520

0,51

6,10

5,27

0,11

0,57

Древесно-тростниковый

35 - 45

350 - 400

0,86

4,95

4,75

0,11

0,91

Сосново-пушицевый

40 - 60

520 - 620

0,315

6,64

4,0

0,09

0,38

Пушицевый

40 - 60

470 - 620

0,315

6,64

4,0

0,09

0,38

Сфагновый

25 - 30

810 - 1000

0,562

7,78

12,2

0,25

0,64

Сфагновый с пушицей

25 - 35

810 - 1000

0,25

8,84

9,0

0,19

0,34

Сфагновый

20 - 25

1000 - 1330

0,545

6,82

9,6

0,20

0,61

Сфагново-пушицевый

25 - 35

810 - 1000

0,25

6,89

12,2

0,25

0,32

Комплексный

15 - 20

670 - 1150

0,57

3,63

10,1

0,24

0,60

То же

15 - 20

1000 - 1330

0,545

6,82

9,72

0,20

0,61


 

* Наибольшее удельное давление определено при штампе 4,5×4,5 м.

 

2. Несущая способность торфяной  залежи при однократном загружении  может быть определена по формуле

,

где Р0 - наибольшее удельное сопротивление сжатию болотистого грунта, кгс/см2;

П - периметр штампа, см;

S - площадь штампа, см2; определяется как произведение ширины основания дороги на длину загружения.

Значение Р0 для некоторых видов торфа может быть взято из табл. 26.

Ввиду многократности воздействия  нагрузок, неоднородности торфяной залежи, недостаточной изученности удельное допускаемое сопротивление Rg принимается равным  
Rg = 0,6 Р0.

3. Осадка торфяного основания hN при многократном воздействии нагрузки и Р < P0 (по П.С.Власову) равна

,

где h - осадка при однократном воздействии нагрузки, определяемая по формуле (по С.С.Корчунову), см;

;

К - коэффициент деформируемости залежи, см;

Р - удельное давление транспортного средства на грунт, кгс/см2;

a - коэффициент уплотнения, см2/кг;

Q - величина нагрузки, кг;

η - динамический коэффициент, равный 1,2;

Сv - коэффициент, зависящий от скорости движения (для некоторых скоростей данные Сv см. в табл. 27).

 

Таблица 27

 

v, км/ч

5 - 8

10 - 15

15 -20

20 - 25

25 -30

Cv

1,3

1,2

1,1

1,05

1,00


 

4. Осадка основания δ при длительном  загружении (по Н.Н.Сидорову) составит:

 

δ = λmax φ(H) f(P),

 

где λmax - коэффициент, зависящий от вида торфяной залежи, степени разложения и влажности, изменяющийся в пределах от 0,4 до 0,9. При отсутствии компрессионных испытаний  
λmax определяют по формулам табл. 28.

Таблица 28

 

Вид торфа

Степень разложения, %

λmax

Малоразложившийся

До 20

Среднеразложившийся

20 - 40

Сильноразложившийся

Более 40

Информация о работе Прокладка трубопроводов в условиях болот