Основные характеристики видеокарт

Автор: Пользователь скрыл имя, 20 Октября 2011 в 22:27, курсовая работа

Описание работы

Необычайно быстрое развитие вычислительной техники приводит к тому, что одновременно в употреблении находится большое количество
компьютеров с достаточно разнообразными характеристиками. Поэтому очень полезно знать, каковы основные характеристики узлов компьютера, на что они влияют и как их подбирать. В данном проекте будут рассмотрены параметры одного из основных элементов компьютера, позволяющего ему нормально функционировать – видеокарта.

Содержание

1. Введение………………………………………………………………………….3
2. Видеокарта……………..……………………………………………………… 4
2.1. История…………………………………………………………………… 6
2.2. Видеопамять…….…………………………………………….…………..9
2.2.1. Для чего используется видеопамять……..………………..…………12
2.2.2. Производительность текстурных карт ……………….……………16
3. Устройство……………………… ……….……………………………………..17
3.1. Из чего состоит видеокарта………………………………………………17
3.2. Основные характеристики видеокарт..…………………………….…….38
3.2.1. Характеристика у видеочипов…………………………………….…..46
3.2.2. Типы памяти……………………………………………………………29
4. Практические рекомендации по выбору видеокарты………………………….32
4.1. Что нового на рынке…………………………………………………….…..34
5. Вывод……………………………………………………………………………. 53
6. Список литературы………………………………………………………………54

Работа содержит 1 файл

курсач по архитектуре.doc

— 1.80 Мб (Скачать)

     Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

     Система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

         Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.  
 

                        
 
 
 
 
 
 
 
 
 
 
 
 
 

                          Основные характеристики видеокарт

      Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим самые важные из них.

                                      Тактовая частота видеочипа

  Рабочая частота GPU измеряется в мегагерцах, в миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа, чем она выше, тем больший объем работы чип может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате RADEON HD 4870 равна 750 МГц, а точно такой же чип на RADEON HD 4850 работает на частоте в 625 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа однозначно определяет производительность, на его скорость сильно влияет и архитектура: количество исполнительных блоков, их характеристики и т.п.  

 В  некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Из свежих примеров можно назвать семейства GeForce GTX от NVIDIA, видеочип модели GTX 285 работает на частоте 648 МГц, но универсальные шейдерные блоки тактуются на значительно более высокой частоте — 1476 МГц.  

                                   Скорость заполнения (филлрейт)

  Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

 Например, пиксельный филлрейт у GeForce GTX 275 равен 633 (частота чипа) * 28 (количество  блоков ROP) = 17724 мегапикселей в секунду,  а текстурный — 633 * 80 (кол-во  блоков текстурирования) = 50640 мегатекселей/с.  Чем больше первое число —  тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе — тем быстрее производится выборка текстурных данных. Оба параметра важны для современных игр, но они должны быть сбалансированы. Именно поэтому количество блоков ROP в современных чипах обычно меньше количества текстурных блоков.  

    Количество блоков пиксельных шейдеров (или пиксельных процессоров)

 Пиксельные  процессоры — это одни из  главных блоков видеочипа, которые  выполняют специальные программы,  известные также как пиксельные шейдеры. По числу блоков пиксельных шейдеров и их частоте можно сравнивать шейдерную производительность разных видеокарт. Так как большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров (см. технологические обзоры игр), то количество этих блоков очень важно! Если одна модель видеокарты основана на GPU с 8 блоками пиксельных шейдеров, а другая из той же линейки — 16 блоками, то при прочих равных вторая будет вдвое быстрее обрабатывать пиксельные программы, и в целом будет производительнее. Но на основании одного лишь количества блоков делать однозначные выводы нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Чисто по этим цифрам прямо можно сравнивать чипы только в пределах одной линейки одного производителя: AMD(ATI) или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх.  

   Количество блоков вершинных шейдеров (или вершинных процессоров)

 Аналогично  предыдущему пункту, эти блоки выполняют программы шейдеров, но уже вершинных. Данная характеристика важна для некоторых игр, но не так явно, как предыдущая, так как даже современными играми блоки вершинных шейдеров почти никогда не бывают загружены даже наполовину. И, так как производители балансируют количество разных блоков, не позволяя возникнуть большому перекосу в распределении сил, количеством вершинных процессоров при выборе видеокарты вполне можно пренебречь, учитывая их только при прочих равных характеристиках.  

Количество  унифицированных  шейдерных блоков (или  универсальных процессоров)

 Унифицированные  шейдерные блоки объединяют два  типа перечисленных выше блоков, они могут исполнять вершинные,  пиксельные, геометрические программы  (также и другие типы, которые появятся в DirectX 11). Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI. А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились в плате NVIDIA GeForce 8800. Все DirectX 10 совместимые видеочипы основаны на подобной унифицированной архитектуре. Унификация блоков шейдеров значит, что код разных шейдерных программ (вершинных, пиксельных и геометрических) универсален, и соответствующие унифицированные процессоры могут выполнить любые программы из вышеперечисленных. Соответственно, в новых архитектурах число пиксельных, вершинных и геометрических шейдерных блоков как бы сливается в одно число — количество универсальных процессоров.  

                                    Блоки текстурирования (TMU)

 Эти  блоки работают совместно с  шейдерными процессорами всех  указанных типов, ими осуществляется  выборка и фильтрация текстурных  данных, необходимых для построения  сцены. Число текстурных блоков в видеочипе определяет текстурную производительность, скорость выборки из текстур. И хотя в последнее время большая часть расчетов осуществляется блоками шейдеров, нагрузка на блоки TMU до сих пор довольно велика, и с учетом упора некоторых игр в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность являются одними из важнейших параметров видеочипов. Особое влияние этот параметр оказывает на скорость при использовании трилинейной и анизотропной фильтраций, требующих дополнительных текстурных выборок.  
 

                             Блоки операций растеризации (ROP)

 Блоки  растеризации осуществляют операции  записи рассчитанных видеокартой  пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт всех времен. И хотя в последнее время её значение несколько снизилось, еще попадаются случаи, когда производительность приложений сильно зависит от скорости и количества блоков ROP (см. технологические обзоры игр). Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

 Нужно  еще раз отметить, что современные  видеочипы нельзя оценивать только  числом разнообразных блоков  и их частотой. Каждая серия  GPU использует новую архитектуру,  в которой исполнительные блоки  сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Компания ATI первой применила архитектуру, в которой количество блоков пиксельных шейдеров было в разы больше числа блоков текстурирования. В некоторых архитектурах нет отдельных пиксельных конвейеров, пиксельные процессоры не «привязаны» к блокам TMU.

                                            Объем видеопамяти

 Собственная  память используется видеочипами  для хранения необходимых данных: текстур, вершин, буферов и т.п.  Казалось бы, что чем её больше  — тем лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти — это наиболее распространенная ошибка! Значение объема памяти неопытные пользователи переоценивают чаще всего, используя его для сравнения разных моделей видеокарт. Оно и понятно — раз параметр, указываемый во всех источниках одним из первых, в два раза больше, то и скорость у решения должна быть в два раза выше, считают они. Реальность же от этого мифа отличается тем, что рост производительности растет до определенного объема и после его достижения попросту останавливается.

 В  каждой игре есть определенный  объем видеопамяти, которого хватает  для всех данных, и хоть 4 ГБ  туда поставь — у нее не  появится причин для ускорения  рендеринга, скорость будут ограничивать  исполнительные блоки, о которых речь шла выше. Именно поэтому во многих случаях видеокарта с 1 ГБ видеопамяти будет работать с той же скоростью, что и карта с 2 ГБ (при прочих равных условиях).

 Ситуации, когда больший объем памяти  приводит к видимому увеличению  производительности, существуют, это очень требовательные игры в высоких разрешениях и при максимальных настройках. Но такие случаи до сих пор редки, поэтому, объем памяти учитывать нужно, но не забывая о том, что выше определенного объема производительность просто не растет, есть более важные параметры, такие как ширина шины памяти и ее рабочая частота. Подробнее о выборе объема видеопамяти читайте в последующих частях материала.  

                                         Ширина шины памяти

 Ширина  шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 128-битной шине можно передать в два раза больше данных за такт, чем по 64-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.

 Современные  видеокарты используют разную  ширину шины: от 64 до 512 бит, в зависимости  от ценового диапазона и времени  выпуска конкретной модели GPU. Для  самых дешёвых low-end видеокарт  чаще всего используется 64- и (значительно  реже) 128-бит, для среднего уровня 128-бит и иногда 256-бит, ну а high-end видеокарты используют шины от 256 до 512 бит шириной. Частично потери в ПСП могут быть скомпенсированы установкой современных типов памяти (см. далее).  

                                            Частота видеопамяти

 Еще  одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А как мы поняли выше, повышение ПСП прямо влияет на производительность видеокарты в 3D приложениях. Частота шины памяти на современных видеокартах бывает от 500 МГц до 2000 МГц, то есть может отличаться в четыре раза. И так как ПСП зависит и от частоты памяти и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 1000 МГц, будет иметь большую пропускную способность, по сравнению с 1400 МГц памятью с 128-битной шиной.

 Рассмотрим  относительную производительность  видеокарт с разной пропускной  способностью на примере видеокарт  RADEON X1900 XTX и RADEON X1950 XTX, которые используют  почти одинаковые GPU с одними характеристиками  и частотой. Основные их отличия  состоят в типе и частоте используемой памяти — GDDR3 на частоте 775(1550) МГц и GDDR4 на 1000(2000) МГц, соответственно. 
 
 

Информация о работе Основные характеристики видеокарт