Автор: Пользователь скрыл имя, 27 Апреля 2012 в 18:14, контрольная работа
Задание:
1. Расположите территории по возрастанию фактора X. Сформулируйте рабочую гипотезу о возможной связи Y и X.
2. Постройте поле корреляции и сформулируйте гипотезу о возможной форме и направлении связи.
3. Рассчитайте параметры а1 и а0 парной линейной функции и линейно-логарифмической функции
Для проверки выдвинутой нулевой гипотезы используется F-критерия Фишера. Его фактическое значение определяется, исходя из соотношения факторной и остаточной дисперсий и их степеней свободы: d.f.1=k и d.f.2=n-k-1; где: n –число изучаемых единиц; k – число ограничений, которые накладываются на исходные данные при расчёте данного показателя. Здесь k равно числу факторов уравнения, то есть k=2.
.
В нашем случае расчёт выглядит следующим образом:
.
Для принятия обоснованного решения Fфактич. сравнивается с Fтабличн., которое формируется случайно и зависит степеней свободы факторной (d.f.1 = k) и остаточной (d.f.2 = n-k-1) дисперсий, а также от уровня значимости α=0,05. В нашем примере, где d.f.1=k= 2 и d.f.2=n-k-1 = 9-2-1=6 при α=0,05 Fтабл = 4,74. В силу того, что Fфактич =48,5> Fтабл. = 5,14, можно с высокой степенью надёжности отклонить нулевую гипотезу, а в качестве альтернативы – согласиться с утверждением, что проверяемые параметры множественной регрессионной модели неслучайны, что коэффициенты уравнения и показатели тесноты связи не являются случайными величинами.
. .
После
подстановки в уравнение
(млрд. руб.)
Полученные коэффициенты эластичности ; показывают, что с ростом среднегодовой стоимости основных фондов в экономике на 1% валовой региональный продукт увеличиться на 1, 005% и с ростом кредитов, предоставленных в 2000 году предприятиям, организациям, банкам и физическим лицам, на 1% валовой региональный продукт увеличится на 0, 165%. Таким образом регулирование валового регионального продукта через среднегодовую стоимость основных фондов в экономике будет более результативным, чем через кредиты.
Задача №3.
Для проверки
рабочих гипотез (№1 и №2) о связи
социально-экономических
Y1- среднегодовая стоимость основных фондов в экономике, млрд. руб.;
Y2 – стоимость валового регионального продукта, млрд. руб.;
X1 - инвестиции 2000 года в основной капитал, млрд. руб.;
X2 – кредиты, предоставленные предприятиям, организациям, банкам и физическим лицам;
X3 – среднегодовая численность занятых в экономике, млн. чел.
Предварительный анализ исходных данных по 18 территориям выявил наличие трёх территорий (г. Москва, Московская обл., Воронежская обл.) с аномальными значениями признаков. Эти единицы должны быть исключены из дальнейшего анализа. Значения приводимых показателей рассчитаны без учёта указанных аномальных единиц.
При обработке исходных данных получены следующие значения линейных коэффициентов парной корреляции, средних и средних квадратических отклонений -σ:
N=15.
Для проверки рабочей гипотезы №1. Для проверки рабочей гипотезы №2.
Y1 | X1 | X2 | Y2 | X3 | |||
Y1 | 1 | 0,7823 | 0,7093 | Y2 | 1 | 0,8474 | 0,7337 |
X1 | 0,7823 | 1 | 0,6107 | 0,8474 | 1 | 0,7061 | |
X2 | 0,7093 | 0,6107 | 1 | X3 | 0,7337 | 0,7061 | 1 |
Средняя | 115,83 | 5,600 | 0,2701 | Средняя | 23,77 | 115,83 | 0,5697 |
30,0303 | 2,4666 | 0,2036 | 7,2743 | 30,0303 | 0,1160 |
Задание:
1. Составьте
систему уравнений в
2. Определите вид уравнений и системы.
3. На основе приведённых в условии значений матриц коэффициентов парной корреляции, средних и средних квадратических отклонений:
Решение:
По полученным результатам построено уравнение в стандартизованном виде:
Второе уравнение можно построить на основе следующих результатов:
Второе уравнение в стандартизованной форме имеет вид: .
По полученным результатам построено уравнение №1 в естественной форме:
Параметры уравнения №2 рассчитываются аналогичным образом. Но главная отличительная особенность их расчёта в том, что в качестве одного из факторов выступают не фактические значения , а его теоретические значения , полученные расчётным путём при подстановке в уравнение №1 фактических значений факторов и .
Указанным способом рассчитаны параметры рекурсивного уравнения:
По полученным результатам построено уравнение №2 в естественной форме: .
Представим результаты построения уравнений в виде рекурсивной системы:
Значения
коэффициентов регрессии