Полициклические ароматические углеводороды: проведение контроля окружающей среды

Автор: Пользователь скрыл имя, 21 Декабря 2011 в 17:22, курсовая работа

Описание работы

Увеличение масштабов и ассортимента применения пестицидов в сельскохозяйственной практике продолжает стимулировать разработку и использование методов аналитической химии малых концентраций токсических органических веществ для анализа объектов окружающей среды, сельскохозяйственного сырья, кормов и продуктов питания. Определение остатков пестицидов в этих средах не имеет самостоятельного значения, но является необходимой частью общей информации для достижения адекватной оценки риска, связанного с применением пестицидов. Оценка риска в прошлом была связана главным образом с безопасностью человека, и по этой причине определение остатков пестицидов было сосредоточено, главным образом, на сельскохозяйственном сырье и продуктах питания. В последние годы увеличение внимания к влиянию пестицидов не только на человека, но и на его окружение, требует значительно большей информации по остаточным количествам не только применяемых пестицидов, но и продуктов их разрушения и метаболизма в различных средах.

Содержание

Введение
Глава 1. Полициклические ароматические углеводороды
Глава 2. Методы контроля ПАУ в объектах окружающей среды
Литература

Работа содержит 1 файл

Полициклические ароматические углеводороды.docx

— 144.62 Кб (Скачать)
 

     С точки зрения разделительного потенциала наиболее выгодно использование метода капиллярной газовой хроматографии. Количество соединений, которое теоретически может быть разделено в единицу времени в капиллярной газовой хроматографии в 5, а может быть и в 10 раз больше, чем с использованием ВЭЖХ. Это не означает однозначного преимущества анализа методом ГХ над ВЭЖХ так, например, разделение таких пар соединений как бензо/б/флуорантрен-бензо/к/флуорантрен, а также (1.2.3-с.д)пирен-дибензо(а,х)антрацен легче осуществляются методом ВЭЖХ, нежели капиллярной ГХ.

     Количество  вещества, вводимого в детектор МС или ФДЛ и дающее возможность  получения спектров, должно быть как  правило, в 5...10 раз выше уровня обнаружения  детектора. Спектры получаемые для  проб природных объектов могут быть дополнительно деформированы в зависимости от количества и состава сопутствующих субстанций.

     Масс-спектры  ПАУ с данной массой молекулы мало характеристичны. На рис. 1, представлены масс-спектры трех соединений с массой молекулы 252: бензо/б/флуорантена, бензо/к/флуорантена, а также бензо/а/пирена. Спектры практически идентичны несмотря на то, что соединения принципиально отличаются строением. Идентификация отдельных ПАУ в технике ГХ-МС требует соответствия масс-спектра и времени выхода. Попытка однозначной идентификации соединений, опирающаяся только на масс-спектры, может оказаться ошибочной. В то же время оптические спектры поглощения представленных соединений имеют существенные различия. По-видимому "незначительная" разница в расположении одного кольца наблюдаемая между бензо/б/флуорантеном и бензо/к/флуорантеном сильно влияет на вид спектра поглощения (рис. 2). 

       

       

     Предел  обнаружения того или иного соединения в растворе зависит от объема пробы, который может быть введен в систему. В случае стандартных систем ГХ-МС с дозаторами типа сплит-сплитнесс, объем вводимой пробы не превышает 1...2 мкл., в то время как для систем ВЭЖХ количество вводимой пробы составляет от 10 до 20 мкл - отсюда становится понятной разница определительной способности в растворе, а также в степени концентрирования необходимого для определения, например, минимального количества на уровне 1 ppt. Уровень обнаружения системы ГХ-МС может быть повышен за счет управления величиной вводимой пробы при использовании дозаторов делающих возможным ввод пробы с объемом в несколько десятков микролитров например, дозаторов типа PTV.

     Неочищенные экстракты ПАУ из природных проб и фракции, содержащие ПАУ после очистки методом колоночной жидкостной хроматографии, как правило, растворяются в известном количестве полярных растворителей например, в метиленхлориде. При использовании техники ВЭЖХ с обращенной фазой, когда проба вводится в полярном растворителе (метанол, ацетонитрил, THF) как правило, конечной является так называемая операция смены растворителя, которая может быть основным источником ошибки. Этих проблем нет в случае газовой хроматографии. Полициклические ароматические соединения являются термически неустойчивыми соединениями и результат их разделения в системах ГХ не всегда адекватен исходному состоянию. В исследованных пробах могут сопутствовать как соединения термически лабильные, так и термически разлагающиеся при повышенной температуре. В случае разложения, протекающего в дозаторе и колонке, могут возникать иные соединения, регистрирующиеся в анализах. В крайних случаях дело может доходить до полного искажения хроматограммы. Эта проблема является главной в газовой хроматографии, где температура дозатора и колонки доходит до 300-350 оС.

     Последовательные  этапы анализа, а именно экстракция, очистка, концентрирование проб сопровождаются ошибками, влияющими на конечный результат количественных определений. Особенно важный этап - экстракция аналита из матрицы. Изменчивость состава почв, аэрозолей или осадков затрудняет установление однозначных условий экстракции ПАУ этого типа проб и установление однозначного выхода экстракции. Контроль этапа экстракции и других аналитических этапов проводится методом добавок внутреннего стандарта. внутренним стандартом может быть определяемая субстанция либо иная с подобными свойствами.

     В случае добавки известного количества определяемой субстанции появляется проблема идентичности отбора и определения нескольких проб при одновременной обработке, состоящая в том, что состав одинаково отобранных и обработанных проб будет адекватен. Во многих случаях выполнение этого постулата невозможно.

     Дополнение  в качестве эталонной субстанции иной, нежели определяемая требует, чтобы в пробе не присутствовали вещества с тем же временем выхода, что и внутренний стандарт. Для проб сложного состава, как например, почва, сточные воды, промвыбросы выполнение этого условия может быть затруднено, исключая добавки с использованием изотопных образцов. Для однозначного определения изотопного состава добавленного образца желательно одновременное использование масс-спектрометрии.

     Все представленные выше методы имеют свои достоинства и недостатки, которые надлежит досконально обдумать перед принятием решения, например о приобретении данной системы, и применении ее для определенного круга исследований.

     Принимая  во внимание возможности разделения, однозначность качественного анализа, возможность контроля аналитического процесса через соотношение внешнего изотопного спектра, оптимальной техникой для исследования ПАУ будет капиллярная газовая хроматография, сопряженная с масс-спектрометром.

     ВЭЖХ  с детектором, регистрирующим спектры  в УФ и видимой части спектра  делает возможным идентификацию  исследуемого соединения. Однако вообще-то возможности разделения и идентификации этой аппаратуры значительно ниже, чем у ГХ-МС.

     Идентификация ПАУ, основанная только на совпадении времени выхода может быть ошибочной. Таким образом, использование даже очень селективного флуориметрического детектора может приводить к получению неоднозначных результатов.

     Использование техники ГХ-ПИД может допускаться  только для количественного анализа проб с хорошо известным составом (предварительно установленным при помощи других методов анализа). В сомнительных случаях результаты анализов (ГХ-ПИД) могут быть сравнительно легко оспорены.

     Выделение полициклических  ароматических углеводородов  из образцов почв

     Полициклические ароматические углеводороды (ПАУ) представляют собой высокомолекулярные органические соединения, основным элементом структуры  которых является бензольное кольцо. Известны несколько сотен индивидуальных ПАУ, различающихся по числу бензольных колец и особенностям их присоединения друг к другу. Это кристаллические соединения (за исключением ряда производных нафталина) с высокой температурой плавления и кипения. Растворимость ПАУ в воде сравнительно невелика.

     Почвы играют роль своеобразного «депо», куда ПАУ попадают в результате антропогенных выбросов и природных поступлений. Их наличие в почвах может играть индикаторную роль, отражая наличие источника загрязнения. Исследования генезиса, превращений и особенностей поведения ПАУ в почвах, особенно охватывающие широкую гамму этих соединений, пока еще не многочисленны. Буквально единичные публикации посвящены анализу распределения гаммы ПАУ по генетическому профилю почв в связи с почвообразовательными процессами и характером техногенного воздействия на почвенный покров. Между тем система ПАУ–почва очень информативна. С одной стороны, почвы представляют собой достаточно устойчивую среду, в которой можно вполне корректно осуществлять наблюдение за эволюцией состава ПАУ и использовать их как маркеры почвообразовательного процесса. С другой стороны, изучение молекулярного состава данных соединений перспективно для получения информации о путях образования каждого молекулярного типа, особенностях их накопления и распределения в почвах фоновых и техногенных территорий и о функциональном состоянии почв. В этом плане важное диагностическое значение имеет количество ароматических колец в молекуле ПАУ, характер их присоединения, наличие или отсутствие алкильных замещений различной степени сложности в боковых звеньях молекул и др.

     ПАУ составляют лишь небольшую часть  органического вещества, но определяющую трансформирующую активность среды. Количественное определение полициклической ароматики, и особенно в объектах фонового мониторинга, представляет собой сложную задачу. В отличие от многих других загрязняющих веществ, ПАУ в ходе аналитического определения могут претерпевать определенные изменения. Наибольшее количество и качественное разнообразие ПАУ наблюдается в тех продуктах, органическое вещество которых подвергалось воздействию повышенных температур.

     Способы подготовки проб почвы к анализу  и техника самого эксперимента должны исключать все виды температурного или какого-либо другого жесткого воздействия. Это особенно важно в случае фоновых концентраций, поскольку жесткие температурные методы обработки биологических объектов могут поставить под сомнение первичность извлеченных из пробы углеводородов. Поэтому не рекомендуется извлекать ПАУ высокотемпературной экстракцией, например, в аппарате Сокслета, поскольку при такой экстракции возможно не только новообразование ПАУ, но и образование смолистоасфальтовых компонентов. Экстракт, как правило, темнеет и дальнейшая работа с ним требует проведения тщательного химического хроматографического разделения, которому обязательно должна предшествовать трудоемкая процедура отделения и отмывания ПАУ от асфальтенов, являющихся хорошими сорбентами определяемых углеводородов. В противном случае результаты хроматографического определения некорректны.

     Экстракт  получали бестемпературной экстракцией  гексаном в сочетании с ультразвуковой обработкой пробы почвы. Установлены  оптимальные параметры экстракции: m (почвенной навески) / V (гексана) = 3 г / 5 см3, 90 %-ный выход вещества достигается только после третьей экстракции, продолжительность УЗ-обработки – 10 минут. Полученный экстракт представляет собой многокомпонентную смесь различных ПАУ незамещенного и замещенного характера, а также часто большого количества сопутствующих соединений, которые в почвах фоновых районов по своей массе значительно преобладают над ПАУ.

     Для целей выделения фракции ПАУ  из экстрактов органического вещества почв, растительных материалов применяют  различные виды хроматографического разделения. Главным образом – колоночную и тонкослойную хроматографии и высокоэффективную жидкостную хроматографию. Нами были проведены исследования по разделению экстрактов при помощи тонкослойной и колоночной хроматографий. Для выделения ПАУ из гексанового экстракта выполнено разделение на оксиде алюминия, отделение фракции насыщенных углеводородов (УВ) и полициклических ароматических соединений (фракция F1) от полярных соединений: фталатов, терпенов, сложных эфиров карбоновых кислот, карбоновых кислот, кетонов, альдегидов, спиртов (фракция F2). Отделение аполярной фракции от полярной контролировали хромато-масс-спектрометрически. Фракцию F1 разделяли на колонке с силикагелем на фракции насыщенных УВ (F3) и полициклические ароматические соединения (F4). Фракцию F3 выделяли элюированием н-гексаном, для выделения фракции F4 элюирование продолжали бензолом. Контроль разделения фракций F3 и F4 осуществляли при помощи методов флуориметрии (значительная флуоресценция для F4 и отсутствие флуоресценции для F3) и хромато-масс-спектрометрии.

     Была  проведена экстракция и выделение  ПАУ из горизонтов торфянисто-подзолисто-глееватой почвы, сформированной на крупнопылеватом суглинке (Максимовский стационар Института биологии Коми НЦ УрО РАН (фоновый участок). Фракцию ПАУ исследовали методом флуориметрии. Распределение ПАУ (рис. 3) по профилю торфянисто-подзолисто-глееватой почвы неравномерное. В верхних торфяных горизонтах 01 и 02 относительно высокое содержание полиароматики можно объяснить формированием ПАУ при процессах разложения органического вещества подстилки. Данная почва характеризуется застойно-промывным водным режимом с высоким увлажнением всего профиля. Образующиеся при разложении торфянистой подстилки ПАУ вымываются из органогенных горизонтов и практически равномерно накапливаются в элювиальной толще (А2g). Но в условиях затрудненного стока и высокой плотности элювиальной толщи в профиле торфяно-подзолисто-глееватой почвы наблюдается область повышенного содержания ПАУ в горизонте А2Вg, далее идет резкое уменьшение количества ПАУ до горизонта Сg. Такие особенности распределения ПАУ по профилю объясняются слабой дифференциацией валового и гранулометрического составов торфянисто-подзолисто-глееватой почвы по сравнению с автоморфной подзолистой почвой.

     Определение полиароматических  углеводородов в  объектах окружающей среды методами жидкостной и тонкослойной хроматографии [21]

     Было  определено содержание полиароматических  углеводородов (ПАУ), в частности, бенз(а)пирена в снежном покрове. Пробоподготовку  осуществляли экстракцией диэтиловым эфиром. Качественный анализ осуществляли методом тонкослойной хроматографии. Пробы наносили на пластину Silufol UV-254 и осуществляли хроматографический анализ в двух системах: система 1 - раствор кофеина в хлороформе; система 2 - смесь циклогексана и н-гексана. Использование системы 1 позволило снизить нижний предел обнаружения.

     Количественный  анализ осуществляли методом газожидкостной хроматографии (ГЖХ). Исследование проводили на хроматографе «Цвет-500» с пламенно-ионизационным детектором. В качестве сорбента использовали силиконовый каучук SE-54 с нанесенной на него неподвижной фазой OV-101. Анализ проводили в режиме программирования температуры от 200 до 310° С со скоростью 4° С /мин. В качестве газа-носителя использовали азот. Метод позволил определить ПАУ на уровне ПДК.

     Определение полициклических  углеводородов в  сланцевой смоле [22]

Информация о работе Полициклические ароматические углеводороды: проведение контроля окружающей среды