Полициклические ароматические углеводороды: проведение контроля окружающей среды

Автор: Пользователь скрыл имя, 21 Декабря 2011 в 17:22, курсовая работа

Описание работы

Увеличение масштабов и ассортимента применения пестицидов в сельскохозяйственной практике продолжает стимулировать разработку и использование методов аналитической химии малых концентраций токсических органических веществ для анализа объектов окружающей среды, сельскохозяйственного сырья, кормов и продуктов питания. Определение остатков пестицидов в этих средах не имеет самостоятельного значения, но является необходимой частью общей информации для достижения адекватной оценки риска, связанного с применением пестицидов. Оценка риска в прошлом была связана главным образом с безопасностью человека, и по этой причине определение остатков пестицидов было сосредоточено, главным образом, на сельскохозяйственном сырье и продуктах питания. В последние годы увеличение внимания к влиянию пестицидов не только на человека, но и на его окружение, требует значительно большей информации по остаточным количествам не только применяемых пестицидов, но и продуктов их разрушения и метаболизма в различных средах.

Содержание

Введение
Глава 1. Полициклические ароматические углеводороды
Глава 2. Методы контроля ПАУ в объектах окружающей среды
Литература

Работа содержит 1 файл

Полициклические ароматические углеводороды.docx

— 144.62 Кб (Скачать)
 
 
 
 
 
 
 
 

     Курсовая  работа

     На  тему

     «Полициклические  ароматические углеводороды: проведение контроля окружающей среды»

 

      СОДЕРЖАНИЕ 

Введение

Глава 1. Полициклические  ароматические углеводороды

Глава 2. Методы контроля ПАУ в объектах окружающей среды 

Литература

 

      ВВЕДЕНИЕ 

     В условиях ускоренного научно-технического развития и бурного роста промышленного производства охрана окружающей среды стала одной из важнейших проблем современности, решение которой неразрывно связано с охраной здоровья нынешнего и будущего поколений людей. Это вызвано тем, что по мере развития производительных сил общества, роста масштабов использования природных ресурсов происходит все большее загрязнение окружающей среды отходами производства, ухудшается качество среды обитания человека и других живых организмов.

     На  современном этапе забота о сохранении природы заключается не только в разработке и соблюдении законодательств об охране Земли и ее недр, лесов и вод, атмосферного воздуха, животного и растительного мира, но и в познании закономерностей причинно-следственных связей между различными видами человеческой деятельности и изменениями, происходящими в природной среде.

     Необходимы  данные о том, как ведут себя, какие  испытывают превращения, к каким последствиям приводят те или иные химические вещества, попадающие в биосферу. От констатации происходящих в природе изменений необходимо переходить к их прогнозированию и управлению качеством среды обитания. При этом традиционные методы физико-химического и биологического анализов служат подспорьем в оценке состояния и динамических характеристик природных экосистем.

     Актуальность. Увеличение масштабов и ассортимента применения пестицидов в сельскохозяйственной практике продолжает стимулировать разработку и использование методов аналитической химии малых концентраций токсических органических веществ для анализа объектов окружающей среды, сельскохозяйственного сырья, кормов и продуктов питания. Определение остатков пестицидов в этих средах не имеет самостоятельного значения, но является необходимой частью общей информации для достижения адекватной оценки риска, связанного с применением пестицидов. Оценка риска в прошлом была связана главным образом с безопасностью человека, и по этой причине определение остатков пестицидов было сосредоточено, главным образом, на сельскохозяйственном сырье и продуктах питания. В последние годы увеличение внимания к влиянию пестицидов не только на человека, но и на его окружение, требует значительно большей информации по остаточным количествам не только применяемых пестицидов, но и продуктов их разрушения и метаболизма в различных средах. Изучение остатков пестицидов теперь включает все виды сельскохозяйственного сырья, кормов и продуктов питания, воду, воздух и почву. Это в сочетании с внедрением в сельскохозяйственные технологии пестицидных препаратов с низкими нормами расхода (<10 г/га) требует принципиально новых подходов и методов для идентификации и количественного определения остатков пестицидов в различных средах.

 

      ГЛАВА 1. ПОЛИЦИКЛИЧЕСКИЕ  АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (ПАУ)

 

     Среди множества токсичных веществ, образующихся при производстве энергии сжиганием  ископаемых видов топлива, производствах  химической, нефтехимической, металлургической, целлюлозно-бумажной промышленности, наиболее опасными являются вещества группы ПАУ (полиароматические углеводороды).

     Группа  ПАУ объединяет вещества, для которых  характерно наличие в химической структуре трех и более конденсированных бензольных колец. Простейшие вещества из группы ПАУ – антрацен и фенантрен. Эти вещества не обладают канцерогенной (мутагенной) токсичностью, присущей другим ПАУ, какими являются холантрен, перилен, бенз(а)пирен, дибензпирен. На фоне их токсичности  как нетоксичные квалифицируются  и весьма похожие по структуре  бензперилен, пирен, флуорантен. 

     Малотоксичные ПАУ

       

     Высококанцерогенные ПАУ

     

 

      Образуются ПАУ в процессах  сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, и чем ниже температура в устройстве для сжигания, тем больше образуется ПАУ. Относительно малые количества бенз(а)пирена обнаружены в асфальте. Вместе с другими продуктами сгорания ПАУ поступают в воздух. При комнатной температуре все ПАУ – твердые кристаллические вещества. Температуры их плавления близки к 200 °С, а давление насыщенных паров очень мало. При охлаждении горячих газов, содержащих ПАУ, эти вещества конденсируются и оседают в зоне выбросов. На расстоянии нескольких километров от угольной ТЭС поверхность почвы загрязнена ПАУ. Но большая часть ПАУ уносится на дальние расстояния в виде аэрозолей. Прекрасным адсорбентом для ПАУ являются сажевые частицы. На 1 см2 сажевой поверхности могут разместиться ~ 1014 молекул ПАУ. Об относительном вкладе разных источников можно судить по данным о выбросах бенз(а)пирена (в т/год) в США: 

Сгорание  угля 600
Производство  кокса 200
Лесные  пожары 150
Сжигание  дров 70
 

     Вклад всех курильщиков США в общее  производство бенз(а)пирена невелик – 0,05 т/год. Но мнение о малозначимости этого количества сменится на противоположное на основе данных о локальных концентрациях бенз(а)пирена: 

Воздух  сельской местности 0,1-1,0 нг/м3
Городской воздух 0,2-20 нг/м3
Воздух  комнаты, наполненной табачным дымом 100 нг/м3
 

     Содержатся  ПАУ и в питьевой воде. Содержание бенз(а)пирена в питьевой воде составляет 0,3-2,0 нг/л. В атмосфере ПАУ довольно устойчивы. Их постепенная трансформация в иные продукты происходит при взаимодействии с озоном (с образованием полиядерных хинонов) и диоксидом азота (продукты – нитробенз(а)пирены, характерные высокой мутагенной активностью). ПАУ – типичные экотоксины. Сложность защиты окружающей среды от ПАУ связана с малостью концентраций этих веществ.

     Токсические свойства бенз(а)пирена изучены на мышах: обнаружено подавление популяции за счет гибели при рождении и уменьшения веса новорожденных животных. Показано, что возникновение раковых заболеваний происходит и при ингаляции, и при введении бенз(а)пирена с пищей, а также при контакте с кожей. Однако эти результаты получены при дозах бенз(а)пирена в сотни и тысячи раз больших, чем получаемые людьми из окружающей среды. Из организма бенз(а)пирен частично выводится в неизмененном виде, а частично окисляется, давая производные фенольного и хинонного типа. Некоторым из этих продуктов также присуща мутагенная активность.[1, 2-6] 

     ГЛАВА 2. МЕТОДЫ КОНТРОЛЯ ПАУ  В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ 

     Методы  определения ПАУ  в объектах окружающей среды[14]

     Развитие  химико-аналитической аппаратуры не только не снимает проблему качества выполняемых измерений, но, напротив, предъявляет все более высокие  требования во всех аспектах проведения измерений. Это относится к процедурам отбора проб, пробоподготовки и, собственно постановки измерений. Особенно это касается выполнения анализов сильно токсичных соединений таких как, например, полиядерные ароматические углеводороды (ПАУ). Многолетние токсикологические исследования позволили обозначить соединения группы ПАУ, которые необходимо постоянно контролировать в окружающей среде, как с точки зрения их собственной токсичности, так и с точки зрения наиболее вероятного поступления в окружающую среду. агентство по охране окружающей среды США (ЕРА US) рекомендует контролировать 16 соединений из группы ПАУ в пробах окружающей среды. нормы, разрабатываемые в рамках ISO и EC, предполагают дополнительное расширение перечня определяемых соединений. Следует отметить, что в России в настоящее время нормируется только одно соединение, относящееся к этому классу - бенз/а/пирен. Очевидно, что со временем перечень контролируемых соединений будет расширяться, поэтому важно заранее проанализировать все возможности, предоставляемые современной аппаратурой, с тем, чтобы правильно подойти к проблеме выбора метода анализа и соответствующего прибора.

     Как правило для определения ПАУ  используются методы газовой хроматографии (ГХ) и высокоэффективной жидкостной хроматографии (ВЭЖХ), разделение основных 16 ПАУ, достаточное для количественного анализа, достигается применением либо капиллярных колонок в газовой хроматографии, либо высокоэффективных колонок применяемых в ВЭЖХ. Необходимо помнить, что колонка, хорошо разделяющая калибровочные смеси шестнадцати ПАУ не гарантирует, что они также хорошо будут разделяться на фоне сопутствующих органических соединений в исследуемых пробах.

     В целях упрощения анализа, а также  для достижения высокого качества получаемых результатов, большинство аналитических процедур содержит этап предварительного выделения (сепарации) ПАУ среди иных групп сопутствующих соединений в пробах. Чаще всего в этих целях используются методы жидкостной хроматографии низкого давления в системе жидкость-твердое тело или жидкость-жидкость с использованием механизмов адсорбции, например с использованием силикагеля или окиси алюминия, иногда используются смешанные механизмы, например адсорбции и исключения с применением cефадексов.

     Использование предварительной очистки проб позволяет  при определении ПАУ избежать влияния:

  • полностью неполярных соединений, таких, как алифатические углеводороды;
  • умеренно и сильно полярных соединений, например, фталанов, фенолов, многоатомных спиртов, кислот;
  • высокомолекулярных соединений таких, как, например, смолы.

     В полученных очищенных экстрактах могут  содержаться алкилпроизводные ПАУ, бифенилы, ароматические производные дибензодиоксана и дибензофурана, а также много иных соединений. В связи с тем, что разделительный потенциал колонок, используемых в ВЭЖХ и капиллярных колонок, используемых в газовой хроматографии, ограничен, достоверность идентификации соединений может быть дополнительно повышена за счет использования высокоселективных детекторов. Детекторы также должны обеспечивать определение анализируемых соединений с достаточной чувствительностью.

     При использовании метода газовой хроматографии  в качестве детектора чаще всего используется пламенно-ионизационный детектор (ПИД) или масс-спектрометр (МС). Пламенно-ионизационный детектор является неселективным детектором и может служить только для количественных измерений после идентификации соединения другим, независимым методом. Масс-спектрометр, сопряженный с газовым хроматографом, дает качественную информацию (масс-спектр) для исследуемой субстанции. Однако в большом количестве случаев специфичность этой информации ограничена вследствие совпадения масс некоторых соединений, различающихся строением и токсичностью.

     В высокоэффективной жидкостной хроматографии (ВЭЖХ) используются главным образом два типа детекторов: флуориметрический детектор или спектрофотометрический детектор с фотодиодной линейкой. Предел обнаружения ПАУ при флуориметрическом детектировании очень низкий, что делает этот метод особенно пригодным для определения следовых количеств полиароматических соединений. Однако классические флуориметрические детекторы практически не дают информации о строении исследуемого соединения. Современные конструкции делают возможным регистрацию спектров флуоресценции, которые характеристичны для индивидуальных соединений, но они пока не получили широкого распространения в практике рутинных измерений. Спектрофотометрический детектор с фотодиодной линейкой (ФДЛ) дает возможность регистрации спектров поглощения в УФ- и видимом спектральном диапазоне, эти спектры могут использоваться для идентификации. Аналогичная информация может быть получена с использованием быстросканирующих детекторов.

     При выборе аналитической техники, предназначенной  для разделения, идентификации и  количественного анализа упомянутых ПАУ необходимо учитывать следующие  условия:

  • уровень определяемых содержаний в исследуемых пробах;
  • количество сопутствующих субстанций;
  • применяемая аналитическая процедура (методика выполнения измерений);
  • возможности серийной аппаратуры.

     В таблице представлены основные характеристики систем, предназначенных для анализа ПАУ: 

     Характеристики  систем ГХ-МС, ГХ-ПИД, ВЭЖХ-флу и ВЭЖХ-ФДЛ, используемых при  анализе ПАУ

характеристика ГХ-МС ГХ-ПИД ВЭЖХ-флу ВЭЖХ-ФДЛ
разрешение (теор. тарелки) 100...200 тыс. 100...200 тыс. 10...20 тыс. 10...20 тыс.
количество  вещества, необходимое для регистрации спектра --- 0,1...1,0 нг 0,01...1,0 нг 0,1...1,0 нг
идентификация изомеров ПАУ нет плохая ? хорошая или  средняя
идентификация алкилпроизводных ПАУ нет средняя или  плохая нет данных средняя или  плохая
концентрация  вещества в пробе 100...1000 нг/мл 100...1000 нг/мл 0,05...1,0 нг/мл 5...50 нг/мл
степень концентри-рования, необходимая для определения 1 ppt в пробе 100...1000 тыс. 100...1000 тыс. 50...1000 5...50 тыс.
смена элюента не применяется не применяется применяется применяется
разложение  пробы при анализе возможно возможно маловероятно маловероятно
возможность анализа изотопного состава нет да нет нет
стоимость текущей эксплуатации низкая средняя высокая высокая

Информация о работе Полициклические ароматические углеводороды: проведение контроля окружающей среды