Шпаргалка по "Биологии"

Автор: Пользователь скрыл имя, 27 Декабря 2011 в 13:21, шпаргалка

Описание работы

1. Задачи физиологии растений. Теоретическая и практическая значимость физиологии растений. 4
2. История развития физиологии растений как науки. Роль отечественных учёных в развитии физиологии растений. 4
3. Химические вещества, входящие в состав растительных клеток. Ферменты, их основные свойства и физиологическое значение. 5
4. Клеточная оболочка, её структура и физиологические функции. Фазы роста клетки, этапы образования клеточной оболочки у растений. 6
5. Основные свойства цитоплазмы: вязкость, эластичность, подвижность, раздражимость. 7
6. Мембранный принцип организации поверхности цитоплазмы и органелл клетки. Функции мембран. Аппарат Гольджи, рибосомы, пероксисомы, лизосомы и митохондрии. 8

Работа содержит 1 файл

Ответы на экзаменационные вопросы по физиологии растений.doc

— 639.50 Кб (Скачать)

Листья  как органы транспирации обладают значительной пластичностью, и в их строении наблюдаются  большие различия, зависящие от условий  водоснабжения и освещенности, при которых происходят формирование и развитие растений. Большое значение для понимания природы засухоустойчивости имеют исследования В. Р. Заленского. В 1904 г. им было установлено, что существует строгая ярусная изменчивость анатомического строения листа. Оказалось, что чем выше расположен лист на стебле, тем сильнее у него выражены признаки ксероморфности, повышающие засухоустойчивость, а именно:

больше  длина проводящей системы на единицу  поверхности;

меньше  размеры клеток как верхнего, так и нижнего эпидермиса;

меньше  размеры устьиц на верхней и нижней сторонах листа;

большее число устьиц на единицу листовой поверхности;

толще наружные стенки у клеток верхнего и нижнего эпидермиса;

сильнее развит восковой налет;

меньше  размеры всех клеток мезофилла;

более типично развита палисадная паренхима;

менее типично выражена губчатая паренхима;

слабее  представлена система межклетников;

несколько сильнее развиты механические ткани.

С анатомическими особенностями связаны также и физиологические: верхние листья отличаются более высокой интенсивностью процессов фотосинтеза и транспирации. Концентрация клеточного сока в клетках верхних листьев выше, и в условиях водного дефицита они оттягивают воду от более оводненных нижних листьев, которые при длительном завядании растения отмирают раньше.

Одним из главных факторов, обусловливающих  ксероморфизм строения листа, являются условия его водоснабжения на ранних фазах развития. Удаленность  от корневой системы и оттягивание  воды растущей верхушкой способствуют тому, что листья верхних ярусов формируются в условиях затрудненного водоснабжения, что приводит к их мелкоклеточности. Такое же ксероморфное строение может быть вызвано и непосредственным воздействием внешних факторов на растение: повышением сухости воздуха, понижением влажности почвы, а также периодическим завяданием. Растения, развивающиеся в таких условиях, отличаются повышенной засухоустойчивостью.

Влияние водного дефицита на метаболические процессы в значительной мере зависит  от длительности его действия. При устойчивом завядании растений увеличивается скорость распада РНК, белков и одновременно возрастает количество небелковых азотсодержащих соединений. Влияние водного дефицита на углеводный обмен листа выражается вначале в снижении моно- и дисахаридов из-за снижения интенсивности фотосинтеза. Затем количество моносахаридов может возрастать в результате гидролиза полисахаридов. При длительном водном дефиците наблюдается уменьшение количества всех форм Сахаров. Детоксикация избытка образующегося при протеолизе аммиака происходит с участием органических кислот, количество которых возрастает в тканях при водном дефиците. Процессы восстановления идут успешно, если не повреждены при недостатке воды генетические системы клеток. Защита ДНК состоит в частичном выведении молекул из активного состояния с помощью ядерных белков и, возможно, с участием специальных стрессовых белков. Поэтому изменения количества ДНК обнаруживаются лишь при сильной длительной засухе.

17. Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы Д.Ф. Сказкина).

На засухоустойчивость влияют удобрения: калийные и фосфорные повышают ее, азотные, особенно в больших дозах, — снижают. Засухоустойчивость ряда сельскохозяйственных культур повышают микроэлементы (цинк, медь и др.). Устойчивости к засухе в полевых условиях способствует выращивание сельскохозяйственных культур с соблюдением зональных технологий их возделывания.

Существование различных типов засухи, региональных ее особенностей сильно затрудняет селекцию сельскохозяйственных растений на засухоустойчивость, требует учета многих видовых, структурно-анатомических и физиолого-биохимических показателей растений. Так, засухоустойчивые сорта зерновых культур при значительном водном дефиците отличаются синтетической направленностью работы ферментных систем, содержат больше связанной воды, имеют повышенную концентрацию клеточного сока, высокий температурный порог коагуляции белков, интенсивное накопление сухого вещества, устойчивую пигментную систему, более четкие признаки ксероморфности и др. Засуха в каждом географическом регионе имеет свои конкретные особенности: преимущественно почвенная или атмосферная, весенняя или летняя, продолжительность и глубина. Эти особенности также определяют выбор критериев для отбора растений.

В онтогенезе растения неодинаково чувствительны к недостатку воды. Очень чувствительны растения к недостатку воды в периоды наибольшего роста конкретного органа или всего растения. Для каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. На I—IV этапах органогенеза злаки относительно устойчивы к засухе, хотя урожай снижается в данном случае за счет уменьшения числа заложившихся колосков в колосе.

На V—VIII этапах устойчивость к засухе злаков снижается, урожай падает за счет уменьшения количества колосков и цветков в колосе (метелке). Засухоустойчивость, как и жаростойкость растений, резко снижается с образованием у них генеративных органов и до цветения (VII—IX этапы) включительно. По Ф. Д. Сказкину, злаки наиболее чувствительны к влаге в период фаз выход в трубку — колошение. Следовательно, в критический период формируются генеративные органы, происходят цветение и оплодотворение.

В период генеративного развития растений на ранних этапах развития засуха приводит к стерильности цветков (к череззерни-це и пустоколосью), а на более поздних (молочная, восковая спелость) — к снижению качества и количества урожая плодов и семян, образованию щуплого зерна, недостаточно заполненного питательными запасными веществами, со слабым зародышем. Важно подчеркнуть, что именно в критические периоды растения наиболее интенсивно растут и формируют хозяйственно полезные органы (плоды, семена и др.).

18. Методы определения  засухоустойчивости растении. Предпосевное закаливание как средство повышения засухоустойчивости растений (работы П.А. Генкеля)

Для диагностики  засухоустойчивости растений используют ряд полевых и лабораторных методов. Сравниваемые сорта и виды растений выращивают в засушливых районах. Сорта, в меньшей степени снижающие урожаи, считаются более засухоустойчивыми. Испытания на засухоустойчивость в засушниках и суховейных установках дают возможность подвергать растения почвенной и атмосферной засухе в любой период их вегетации и оценивать сорта. Засушники — это делянки, на которых исследуемые растения закрывают в период дождей пленкой. Для отвода воды с соседних делянок выкапывают стоковые канавы. При использовании суховейных камер растения выращивают в вегетационных сосудах и затем подвергают действию струй нагретого и высушенного воздуха.

Как показатель устойчивости растений к засухе можно  использовать водоудерживающую способность растительной ткани, а также вязкость цитоплазмы. У засухоустойчивых растений эти показатели будут выше. В селекционной работе используют такой показатель, как содержание статолитного крахмала в корневом чехлике. Генетически обусловленным признаком засухоустойчивости растений является способность их вегетативных органов (особенно листьев) накапливать во время засухи пролин. При этом концентрация пролина увеличивается в 10—100 раз. В пролине запасается значительное количество азота, который используется для последующих метаболических реакций по окончании засухи.

И. В. Мичурин, пытаясь получить засухоустойчивые сорта плодовых, выращивал растения в условиях недостаточного водоснабжения. Растения, перенесшие небольшую засуху, повторно выдерживают ее с меньшими потерями, становятся более устойчивыми к обезвоживанию.

Разработаны методы предпосевного закаливания  к засухе. П. А. Генкель (1934) предложил  закаливать наклюнувшиеся семена, подвергая их подсушиванию от одного до трех раз. В результате повышается засухоустойчивость растений и увеличивается их урожайность в засушливых условиях (пшеница и другие культуры). Закаленные растения приобретают анатомо-морфологическую структуру, свойственную засухоустойчивым растениям, имеют более развитую корневую систему. Окислительное фосфорилирование у 4-, 8- и 11-дневных проростков кукурузы было у закаленных растений выше, чем у контрольных. Эффективность предпосевного закаливания по методу Генкеля повышается при замачивании семян в слабых растворах борной кислоты. Улучшает всхожесть и повышает жароустойчивость растений обработка семян цитокинином.

19. Типы ксерофитов, их характеристика.

У растений засушливых местообитаний — ксерофитов — выработались приспособления, позволяющие переносить периоды засухи.

Растения используют три основных способа защиты:

I) предотвращение излишней потери воды клетками (избегание

высыхания). 2) перенесение высыхания, 3) избегание  периода

засухи. Наиболее общими являются приспособления

для сохранения воды в клетках.

Группа  ксерофитов очень разнородна. По способности  переносить условия засухи различают следующие их типы (по П. Л. Генкелю):

1. Суккуленты (по Н. А. Максимову — ложные ксерофиты) — растения, запасающие влагу (кактусы, алоэ, очиток, молодило, молочай). Вода концентрируется в листьях или стеблях, покрытых толстой кутикулой, волосками. Транспирация. фотосинтез и рост осуществляются медленно. Они плохо переносят обезвоживание. Корневая система распространяется широко, но на небольшую глубину.

2. Несуккулентные виды по уровню транспирации делятся на несколько групп.

а) Настоящие ксерофиты (эвксерофиты — полынь, вероника беловойлочная и др.). Растения с небольшими листьями, часто опушенными, жароустойчивы, транспирация невысокая, способны выносить сильное обезвоживание, в клетках высокое осмотическое давление. Корневая система сильно разветвлена, но на небольшой глубине.

б) Полуксерофиты (гемиксерофиты — шалфей, резак и др.) Обладают интенсивной транспирацией, которая поддерживается деятельностью глубокой корневой системы, часто достигающей грунтовых вод. Плохо переносят обезвоживание и атмосферную засуху. Вязкость цитоплазмы у них невелика.

в) Стипаксерофиты — степные злаки (ковыль и др.). Приспособлены к перенесению перегрева, быстро используют влагу летних дождей, но переносят лишь кратковременный недостаток волы в почве.

г) Пойкилоксерофиты (лишайники и др.) не способны регулировать свой водный режим и при значительном обезвоживании впадают в состояние покоя (анабиоз). Способны переносить высыхание.

20. Поступление питательных  веществ в растение.

Корневая  система растений поглощает из почвы  как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Многочисленные исследования показали, что почти никогда раствор питательных солей не поступает в растение в неизменной концентрации. Из очень разбавленных растворов соли поглощаются быстрее, чем вода, и раствор становится еще более слабым. Наоборот, из концентрированных растворов растение берет больше воды, чем солей, и раствор становится еще более концентрированным.

Растения  поглощают вещества избирательно, в результате соотношение поглощенных веществ обычно оказывается иным, чем в питательном растворе. В тканях актинидии китайской концентрация фосфора в несколько тысяч раз, а калия и азота в десятки раз превышает содержание этого элемента в почвенном растворе. Эти данные свидетельствуют также о том, что поглощение веществ идет не только избирательно, но и против градиента концентраций.

Процесс поглощения веществ делят на два  этапа: поступление ионов в свободное  пространство корня; транспорт их в  протопласты клеток. При помещении корней растений на раствор катионного красителя, например метиленового синего, можно наблюдать, что в первые же 3 мин из раствора поглощается примерно половина того количества, которое поглотится за длительное время. Дальнейшее поглощение будет идти очень медленно (часами). Действие на корневую систему дыхательных ядов или пониженной температуры полностью снимает последующее медленное поглощение вещества из раствора. При переносе корней в воду или раствор соли наблюдается обратная картина: быстрое выделение красителя в первые не--сколько минут и последующий медленный его выход из ткани. Причем количественно выход красителя в раствор превышает ныход в воду. Первоначальное быстрое поглощение веществ осуществляется в клеточных стенках и является адсорбцией, а быстрое выделение — десорбцией. Больший выход красителя в раствор соли свидетельствует об обменном характере адсорбции. Та часть объема корня, где происходят процессы обменной адсорбции, получила название кажущегося свободного пространства (КСП). Термин «кажущееся» означает, что объем этого пространства зависит от объекта и природы растворенного вещества. КСП включает межмолекулярные пространства в толще клеточных стенок и на поверхности плазмалеммы и клеточных стенок и занимает 5—10 % объема корня.

Информация о работе Шпаргалка по "Биологии"