Автор: Пользователь скрыл имя, 19 Сентября 2011 в 18:06, реферат
Аэробное окисление в биологических прудах представляет собой процесс минерализации органических веществ под действием микроорганизмов, обитающих в воде. Биологические пруды - это водоемы, в которых создаются наиболее благоприятные для жизнедеятельности микроорганизмов условия (небольшая глубина, отсутствие течений, большое количество микроводорослей, насыщающих воду кислородом, обилие простейших, питающихся бактериями и т.п.).
В митохондриях на 3 участках окислительной цепи происходит выделение протонов во внешнюю среду. Соответственно 3 реакции ведут к образованию DmH+ (рис. 96). Первая локализована в начале дыхательной цепи и связана с функционированием НАД(Ф)-H2-дегидрогеназы. Второй генератор DmH+ определяется способностью убихинона переносить водород. Последний локализован в конце дыхательной цепи и связан с активностью цитохромоксидазы.
Поскольку синтез молекулы АТФ связан, как минимум, с переносом 2 протонов через АТФ-синтазу, а при окислении НАД(Ф)-H2 молекулярным кислородом, т. е. поступлении 2 электронов на 1/2O2 выделяются 6H+, максимальный выход АТФ в этом .процессе составляет 3 молекулы. Для количественной оценки эффективности фосфорилирования при переносе электронов используют отношение P/O, означающее количество потребленных молекул неорганического фосфата, приходящихся на 1 поглощенный атом кислорода. H2 препаратах изолированных митохондрий показано, что при переносе водорода от изолимонной или яблочной кислот на НАД+, а затем на молекуляроный кислород отношение P/O равно 3. Приокислении янтарной кислоты, водород которой переносится на сукцинатдегидрогеназу и далее на убихинон, возможны только 2 фосфорилирования, так как при этом выпадает участок дыхательной цепи, где локализован первый генератор DmH+. Таким образом, место включения электронов от разных субстратов в цепь их дальнейшего транспорта определяет число функционирующих протонных помп в дыхательной цепи.
Рис. 96. Топография компонентов дыхательной цепи митохондрий: ФМН — простетическая группа НАД(Ф)-H2-дегидрогеназы; ФАД — простетическая группа сукцинатдегидрогеназы; FeS — железхеросолержащий белок; b, c1, c, a, a3 — цитохромы. |
Теперь можно подвести итог тому, каков энергетический выход при окислении молекулы глюкозы, осуществляемом в максимально отлаженной энергетической системе, функционирующей в эукариотных клетках: гликолиз ® ЦТК ® дыхательная цепь митохондрий. H2 первом этапе в процессе гликолитичес-кого разложения молекулы глюкозы образуются по 2 молекулы пирувата, АТФ и НАД-H2. Конечными продуктами реакции окислительного декарбоксилирования 2 молекул пирувата, катализируемой пируватдегидрогеназным комплексом, являются 2 молекулы ацетил-КоА и НАД-H2. Окисление 2 молекул ацетил-КоА в ЦТК приводит к образованию 6 молекул НАД-H2 и по 2 молекулы ФАД-H2 и АТФ. Перенос каждой пары электронов с НАД-H2, если принять P/O равным 3, приводит к синтезу 30 молекул АТФ (2 молекулы НАД-H2 дает процесс гликолиза, 2 молекулы НАД-H2 — окислительное декарбоксилирование пирувата, 6 молекул НАД-H2 — ЦТК). Перенос каждой пары электронов с ФАД-H2 приводит к синтезу 2 молекул АТФ, т. е. при двух оборотах цикла это дает 4 молекулы АТФ. К этому следует прибавить 2 молекулы АТФ, образуемые в процессе гликолиза, и 2 молекулы АТФ, синтезируемые в ЦТК на этапе превращения сукцинил-КоА в янтарную кислоту. Итак, полное окисление 1 молекулы глюкозы в максимальном варианте приводит к образованию 38 молекул АТФ.
Для аэробных эубактерий характерна меньшая степень сопряжения электронного транспорта в дыхательной цепи с фосфорилированием, проявляющаяся в низком значении коэффициента Р/O. В опытах, проводившихся с использованием препаратов бактериальных мембран, это отношение в большинстве случаев не превышало 1. Невысокое значение Р/O связано с тем, что в бактериальных дыхательных цепях локализовано меньше генераторов DmH+, чем в митохондриальной дыхательной цепи. Нельзя также исключать и то обстоятельство, что в процессе получения препаратов бактериальных мембран нарушается их структурная целостность, а это приводит к резкому падению функциональной активности выделенных мембран. У Е. coil и Azotobacter vinelandii отношение P/O равно 2, у Corynebacterium diphteriae — 1, а у Mycobacterium phlei — 3. Это позволяет сделать вывод о том, что дыхательные цепи бактерий весьма существенно отличаются от аналогичной системы, функционирующей в эукариотных клетках. Они менее стабильны по составу и значительно менее энергетически эффективны.
Все эубактерий, имеющие развитую систему электронного транспорта, сопряженного с генерированием энергии, можно разделить на две большие группы в зависимости от источника энергии, т. е. природы донора электронов. К первой группе относятся организмы, использующие в качестве источника энергии процессы окисления неорганических соединений. Вторую группу составляют организмы, у которых донорами электронов служат различные органические соединения.
Таблица 29. Типы анаэробного дыхания у эубактерий*
|
* Описаны анаэробные
бактерии, способные окислять
Вместо O2
некоторые эубактерий могут в качестве
конечного акцептора электронов использовать
ряд окисленных органических или неорганических
соединений (табл.
29). Этот процесс
получил название анаэробного дыхания.
Освобождаемая энергия и состав переносчиков
определяются окислительно-
ГРУППЫ ХЕМОЛИТОТРОФНЫХ ЭУБАКТЕРИЙ
Эубактерий, у которых источником энергии служат процессы окисления неорганических соединений, были обнаружены в конце XIX в. и их открытие связано с именем С. Н. Виноградского. В качестве источников энергии хемолитотрофы могут использовать довольно широкий круг неорганических соединений, окисляя их при дыхании (табл. 30). Дыхательные цепи хемолитотрофов содержат те же типы переносчиков, что и хемоорганотрофов. Разнообразие наблюдается только на периферических участках энергетического метаболизма, так как для окисления неорганических соединений, связанного с получением энергии, необходимы соответствующие ферментные системы. Например, у Thiobacillus ferrooxidans, получающего энергию в результате окисления двухвалентного железа, дыхательная цепь дополнена медьсодержащим белком рустицианином, непосредственно акцептирующим электроны с Fe2+.
Таблица 30. Группы хемолитотрофных эубактерий*
|
* Описана автотрофная бактерия Stibiobacter senarmontii, источником энергии для которой служит окисление трехвалентной сурьмы до пятивалентной.
** Если акцептор электронов O2, одним из конечных продуктов является вода.
*** У отдельных
представителей. Используемые в
качестве доноров электронов
неорганические соединения
Природа остроумно
решила эту проблему ценой дополнительных
энергетических затрат: в тех случаях,
когда место включения
Рис. 97.
Окисление различных |
Все это создает
большую нагрузку на конечный этап
дыхательной цепи. Действительно, у
железобактерий и нитрификаторов конечный
участок дыхательной цепи развит
очень сильно: эти бактерии характеризуются
исключительно высоким
Эубактерии, окисляющие соединения серы
Описано много представителей разных групп эубактерий, способных окислять восстановленные соединения серы, например, сероводород, тиосульфат, а также молекулярную серу. Это фототрофы, осуществляющие бескислородный фотосинтез, некоторые типичные гетеротрофные бактерии родов Bacillus, Pseudomonas, Arthrobacter и других и группы бесцветных серобактерий и тионовых бактерий. Окисление серы и ее восстановленных соединений может служить источником клеточной энергии, электронов при фотосинтезе, использоваться для детоксикации образующейся при дыхании перекиси водорода.
Тионовые бактерии. Использование процесса окисления серы и ее неорганических восстановленных соединений для получения клеточной энергии показано для группы тионовых бактерий, представленных родами Thiobacillus, Thiomicrospira, Thiodendron и др. Это одноклеточные организмы разной морфологии и размеров; неподвижные или подвижные (движение осуществляется с помощью полярно расположенных жгутиков); бесспоровые. Размножаются делением или почкованием. Имеют клеточную стенку грамотрицательного типа. Для некоторых представителей рода Thiobacillus характерна развитая система внутрицитоплазматических мембран.
Для тионовых бактерий показана способность окислять с получением энергии помимо молекулярной серы (S0) многие ее минеральные восстановленные соединения: сульфид (S2 – ), тиосульфат (S2O32 – ) сульфит (SO32 – ), тритионат (S3O62 – ), тетратионат (S4O62 – ). Некоторые тионовые бактерии могут получать энергию за счет окисления тиоцианата (CNS – ), диметилсульфида (CH3SCH3), диметилдисульфида (CH3SSCH3), а также сульфидов тяжелых металлов. Там, где в качестве промежуточного продукта окисления образуется молекулярная сера, она откладывается вне клетки. Thiobacillus ferrooxidans получает энергию, окисляя также двухвалентное железо.
Информация о работе Аэробное и анаэробное окисление микроорганизмов