Автор: Пользователь скрыл имя, 19 Сентября 2011 в 18:06, реферат
Аэробное окисление в биологических прудах представляет собой процесс минерализации органических веществ под действием микроорганизмов, обитающих в воде. Биологические пруды - это водоемы, в которых создаются наиболее благоприятные для жизнедеятельности микроорганизмов условия (небольшая глубина, отсутствие течений, большое количество микроводорослей, насыщающих воду кислородом, обилие простейших, питающихся бактериями и т.п.).
NH3 + O2 + НАД-H2 ® NH2OH + H2O + НАД+.
Гидроксиламин далее ферментативно окисляется до нитрита:
NH2OH + O2 ® NO2 – + H2O + H+.
Электроны от NH2OH поступают в дыхательную цепь на уровне цитохрома c и далее на терминальную оксидазу. Их транспорт сопровождается переносом 2 протонов через мембрану, приводящим к созданию протонного градиента и синтезу АТФ. Гидроксиламин в этой реакции, вероятно, остается связанным с ферментом.
Вторая фаза нитрификации сопровождается потерей 2 электронов. Окисление нитрита до нитрата, катализируемое молибденсодержащим ферментом нитритоксидазой, локализовано на внутренней стороне ЦПМ и происходит следующим образом:
NO2 – + H2O ® NO3 – + 2H+ + 2е–.
Электроны поступают на цитохром a1 и через цитохром c на терминальную оксидазу aa3 где акцептируются молекулярным кислородом (рис. 98, Б). При этом происходит перенос через мембрану 2H+. Поток электронов от NO2– на O2 происходит с участием очень короткого отрезка дыхательной цепи. Так как E0 пары NO2–/NO3– равен +420 мВ, восстановитель образуется в процессе энергозависимого обратного переноса электронов. Большая нагрузка на конечный участок дыхательной цепи объясняет высокое содержание цитохромов c и a у нитрифицирующих бактерий.
Многие
Нитрифицирующие
бактерии обнаружены в водоемах разного
типа и в почвах, где они, как
правило, развиваются совместно
с бактериями, жизнедеятельность
которых приводит к образованию
исходного субстрата
Процесс нитрификации,
являясь важным звеном в круговороте
азота в природе, имеет как
положительные, так и отрицательные
стороны. Переведение азота из аммонийной
формы в нитратную способствует
обеднению почвы азотом, поскольку
нитраты легко вымываются из почвы.
В то же время нитраты — хорошо
используемый растениями источник азота.
Связанное с нитрификацией
Водородные бактерии
К водородным бактериям
относят эубактерии, способные получать
энергию путем окисления
H2 + 1/2O2 ® H2O.
Помимо окисления
для получения энергии
6H2 + 2O2 + CO2 ® CH2O + 5H2O.
Молекулярный водород — наиболее распространенный неорганический субстрат, используемый эубактериями для получения энергии в процессе окисления. Число бактерий, растущих хемолитотрофно на основе использования H2 в качестве источника энергии, намного больше организмов, использующих для этой цели другие неорганические субстраты (восстановленные соединения серы, азота, железа).
Способность к энергетическому использованию H2 может сочетаться с конструктивным метаболизмом облигатно гетеротрофного типа (например, у представителей родов Azotobacter или Acetobacter) или происходить в строго анаэробных условиях (сульфатвосстанавливающие бактерии), что не позволяет относить обладающие этими особенностями организмы к водородным бактериям. Таким образом, водородные бактерии представляют только часть эубактерии, способных использовать H2 для получения энергии. Пути использования молекулярного водорода эубактериями суммированы в табл. 31. Водородные бактерии характеризуются способностью сочетать конструктивный метаболизм автотрофного типа (вариант 1) с получением энергии за счет окисления H2 с участием молекулярного кислорода (вариант 3).
Таблица 31. Пути использования молекулярного водорода эубактериями
|
Впервые водородные
бактерии были описаны А. Ф. Лебедевым
и Г. Казерером (Н. Kaserer) в 1906 г., а в
1909 г. С. Орла-Йенсен выделил их в
самостоятельный род Hydrogenom
Последующее изучение обнаружило сходство водородных бактерий с представителями разных родов гетеротрофных бактерий: Pseudomonas, Alcaligenes, Nocardia и др. Стало ясно, что водородные бактерии — не таксономическая группа, а организмы, объединяемые на основании нескольких физиологических признаков. Род Hydrogenomonas был ликвидирован, и виды, входившие в его состав, распределены по другим таксономическим группам.
К водородным бактериям
относятся представители 20 родов, объединяющих
грамположительные и
За исключением недавно описанных термофильных бактерий, выделенных в род Hydrogenobacter и характеризующихся облигатной хемолитоавтотрофией, все остальные водородные бактерии — факультативные формы, использующие в качестве источника углерода и энергии также разнообразные органические соединения, некоторые из них — и одноуглеродные соединения, более восстановленные, чем CO2 (окись углерода, метанол, формиат и др.). Ассимиляция CO2 происходит в восстановительном пентозофосфатном цикле. Водородные бактерии, растущие на органических соединениях, имеют тот же метаболический аппарат, что и хемоорганогетеротрофные эубактерии. Метаболизирование органических соединений у разных представителей этой группы осуществляется с помощью гликолитического, окислительного пентозофосфатного и Энтнера — Дудорова путей, а также ЦТК. и глиоксилатного шунта.
Электронтранспортная цепь водородных бактерий по составу аналогична митохондриальной (см. рис. 94). Большинство из них относится к облигатным аэробам. Однако среди облигатных аэробов преобладают виды, тяготеющие к низким концентрациям O2 в среде. Особенно чувствительны к O2 водородные бактерии, растущие хемолитоавтотрофно, а также в условиях фиксации молекулярного азота. Последнее объясняется инактивирующим действием молекулярного кислорода на гидрогеназу и нитрогеназу — ключевые ферменты метаболизма H2 и фиксации N2. Для некоторых водородных бактерий показана способность расти и в анаэробных условиях, используя в качестве конечного акцептора электронов вместо O2 нитраты, нитриты или окислы железа. Примером факультативно аэробных водородных бактерий может служить Paracoccus denitrificans, у которого в аэробных условиях работает электронтранспортная цепь, аналогичная митохондриальной, а в отсутствие O2 электроны с помощью соответствующих редуктаз переносятся на NO3 – и NO2 – , восстанавливая их до N2 (рис. 98, В). Однако большая часть факультативно аэробных водородных бактерий способна к восстановлению нитратов только до нитритов.
Как известно, способность к окислению H2 связана с наличием гидрогеназ, катализирующих реакцию: H2 ® 2H+ + 2e–. Гидрогеназы обнаружены у многих представителей прокариотного мира. В клетке гидрогеназы могут находиться в растворимом или связанном с мембранами состоянии. По этому признаку все изученные водородные бактерии могут быть разделены на 3 группы. Большинство содержит только одну форму фермента — связанную с мембранами. Есть виды, содержащие обе формы или только растворимую (цитоплазматическую) гидрогеназу.
Гидрогеназы, имеющие различную локализацию, вероятно, выполняют в клетке разные функции. Связанный с мембранами фермент не способен восстанавливать НАД+, передает электроны непосредственно в дыхательную цепь на уровне флаво-протеинов, хинонов или цитохрома b и, таким образом, имеет отношение только к энергетическим процессам. Растворимая гидрогеназа переносит электроны на молекулы НАД+, которые участвуют далее в различных биосинтетических реакциях.
Если водородные
бактерии содержат обе формы гидрогеназы,
функции между ними четко разделены.
В случае отсутствия у водородных
бактерий цитоплазматической гидрогеназы
возникает проблема получения восстановителя
при хемолитоавтотрофном
К образованию молекулярного водорода приводят разные процессы, в том числе и биологические. Активными продуцентами H2 являются эубактерий. Также активно осуществляется и потребление H2, важная роль в этом принадлежит водородным бактериям. Нахождение в природе и возможность размножения этих бактерий определяются рядом факторов; основные из них — наличие H2 и аэробные условия.
В последнее время водородные бактерии привлекают к себе внимание возможностью практического использования: для получения кормового белка, а также ряда органических соединений (кислоты, аминокислоты, витамины, ферменты и др.).
Карбоксидобактерии
Карбоксидобактерии — аэробные эубактерий, способные расти, используя окись углерода (CO) в качестве единственного источника углерода и энергии. Таким свойством обладают некоторые представители родов Pseudomonas, Achromobacter, Comamonas67.
67 Способность окислять CO обнаружена у представителей прокариот, принадлежащих к эубактериям (пурпурные несерные бактерии, цианобактерии, клостридии) и архебактериям (метанобразующие бактерии). Однако в большинстве случаев этот процесс не поддерживает рост культур и механизм его неясен.
Карбоксидобактерии могут расти автотрофно, ассимилируя CO2 в восстановительном пентозофосфатном цикле, а также использовать в качестве единственного источника углерода и энергии различные органические соединения. При выращивании на среде с CO2 в качестве единственного источника углерода большинство Карбоксидобактерии энергию могут получать за счет окисления молекулярного водорода, при этом рост на среде с CO2 + H2 происходит активнее, чем на среде с CO. Это дало основание некоторым исследователям рассматривать Карбоксидобактерии как особую физиологическую подгруппу водородных бактерий. В то же время способность использовать в качестве субстрата дыхательный яд указывает на осуществление карбоксидобактериями нового типа хемолитотрофного метаболизма. Кроме того, обнаружение у них ферментов и факторов, отсутствующих у водородных бактерий, неспособность некоторых карбоксидобактерий окислять H2 и ряд других признаков позволяют сделать вывод об определенной обособленности этой группы эубактерий.
Использование CO карбоксидобактериями происходит путем его окисления в соответствии с уравнением:
CO + H2O ® CO2 + 2e – + 2H+.
Продукт реакции используется далее по каналам автотрофного метаболизма. (Таким образом, при выращивании карбоксидобактерий на среде с CO в качестве единственного источника углерода и энергии источником углерода служит не CO, а CO2). Теоретически суммарное уравнение окисления CO и синтеза клеточной биомассы карбоксидобактерий может быть представлено в следующем виде:
7СО + 2,5O2 + H2O ® 6CO2 + (CH2O),
Информация о работе Аэробное и анаэробное окисление микроорганизмов