Статистические ряды динамики

Автор: Пользователь скрыл имя, 01 Ноября 2012 в 19:15, курсовая работа

Описание работы

Основной целью и задачей моей курсовой работы, по вопросам анализа рядов динамики в статистики, является изучение классификации, структуры, тенденции и колеблемость, а также задачи, решаемые в практической части, с помощью рядов динамики.

Содержание

Введение


1. ПОНЯТИЯ И КЛАССИФИКАЦИЯ РЯДОВ ДИНАМИКИ
1.1 Понятие о статистических рядах динамики
1.2 Требования, предъявляемые к рядам динамики
1.3 Тенденция и колеблемость в рядах динамики
1.4 Структура ряда динамики. Задачи, решаемые с помощь рядов динамики. Взаимосвязанные ряды динамики

2. ПОКАЗАТЕЛИ, РАССЧИТЫВАЕМЫЕ НА ОСНОВЕ РЯДОВ ДИНАМИКИ
2.1Статистические показатели динамики социально – экономических явлений
2.2 Средние показатели в рядах динамики
2.3 Проверка ряда на наличие тренда. Непосредственное выделение тренда
2.4 Анализ сезонных колебаний
2.5 Анализ взаимосвязанных рядов динамики

3. Примеры задач
3.1 Пример №1
3.2 Пример №2


Заключение
Список литературы и источников
Практическая часть
Приложения
3


4
4
6
7
8


9

9

12
14
18
20

23
23
24


25

Работа содержит 1 файл

статистика.doc

— 707.00 Кб (Скачать)

Проверка на наличие  тренда в ряду динамики может быть осуществлена по нескольким критериям.

  1. Метод средних. Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два), для каждого из которых определяется средняя величина ( ) . Выдвигается гипотеза о существенном различии средних. Если эта гипотеза принимается, то признается наличие тренда.
  2. Фазочастотный критерий знаков первой разности (критерий Валлиса и Мура). Суть его заключается в следующем: наличие тренда в динамическом ряду утверждается в том случае, если этот ряд не содержит либо содержит в приемлемом количестве фазы – изменение знака разности первого порядка (абсолютного цепного прироста).
  3. Критерий Кокса и Стюарта. Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае, когда число уровней ряда не делится на три, недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп.
  4. Метод серий. По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов: например, если уровень ряда меньше медианного значения , то считается, что он имеет тип А, в противном случае – тип В. Теперь последовательность уровней выступает как последовательность типов. В образовавшейся последовательности типов определяется число серий (серия – любая последовательность элементов одинакового типа, с обоих сторон граничащая с элементами другого типа).

Если в ряду динамики общая  тенденция к росту или снижению отсутствует, то количество серий является случайной величиной, распределенной приближенно по нормальному закону (для n > 10). Следовательно, если закономерности в изменениях уровней нет, то случайная величина R оказывается в доверительном интервале

 

.

 

Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.

Среднее число серий вычисляется по формуле 22:

 

                                           .                                  (22)

 

Среднее квадратическое отклонение числа  серий вычисляется по формуле 23:

 

                                          .                            (23)

 

здесь n - число уровней ряда.

Выражение для доверительного интервала приобретает вид

 

 

Полученные границы доверительного интервала округляют до целых чисел, уменьшая нижнюю границу и увеличивая верхнюю.

Непосредственное выделение  тренда может быть произведено тремя методами.

  1. Укрупнение интервалов. Ряд динамики разделяют на некоторое достаточно большое число равных интервалов. Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления, переходят к расчету уровней за большие промежутки времени, увеличивая длину каждого интервала (одновременно уменьшается количество интервалов).
  2. Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких  симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Интервал может быть нечетным (3,5,7 и т.д. точек) или четным (2,4,6 и т.д. точек).

При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала, при четном это делать нельзя. Поэтому при обработке ряда четными интервалами их искусственно делают нечетными, для чего образуют ближайший больший нечетный интервал, но из крайних его уровней берут только 50%.

Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда. Получают их специальными приемами – расчетом средней арифметической взвешенной. Так, при сглаживании по трем точкам выровненное значение в начале ряда рассчитывается по формуле 24:

 

                       .                              (24)

 

Для последней точки расчет симметричен.

При сглаживании по пяти точкам имеем  такие уравнения (формулы 25):

 

                                    (25)

 

Для последних двух точек ряда расчет сглаженных значений полностью симметричен  сглаживанию в двух начальных точках.

Формулы расчета по скользящей средней выглядят, в частности, следующим образом (формула 26):

 

для 3-членной   .                                (26)

 

  1. Аналитическое выравнивание. Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления. Развитие предстает перед исследователем как бы в зависимости только от течения времени. В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющийся во времени результат действия всех причинных факторов. Отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически. В результате приходят к трендовой модели, выраженной формулой 27:

 

                                       ,                                       (27)

 

где f(t) – уровень, определяемый тенденцией развития;

        - случайное и циклическое отклонение от тенденции.

Целью аналитического выравнивания динамического  ряда является определение аналитической  или графической зависимости  f(t). На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.

Чаще всего при выравнивании используются следующие зависимости:

линейная  ;

параболическая  ;

экспоненциальная 

или ).

  1. Линейная зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.
  2. Параболическая зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.
  3. Экспоненциальные зависимости применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста), либо, при отсутствии такого постоянства, устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста, цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.д.).

Оценка параметров ( ) осуществляется следующими методами:

  1. Методом избранных точек,
  2. Методом наименьших расстояний,
  3. Методом наименьших квадратов (МНК)

В большинстве расчетов используется метод наименьших квадратов, который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выровненных:

Для линейной зависимости ( ) параметр обычно интерпретации не имеет, но иногда его рассматривают, как обобщенный начальный уровень ряда; - сила связи, т. е. параметр, показывающий, насколько изменится результат при изменении времени на единицу. Таким образом, можно представить как постоянный теоретический абсолютный прирост.

Построив уравнение регрессии, проводят оценку его надежности. Это делается посредством критерия Фишера (F). Фактический уровень ( ), вычисленный по формуле 28, сравнивается с теоретическим (табличным) значением:

 

           ,         (28)

 

где k - число параметров функции, описывающей тенденцию;

n             - число уровней ряда ;

Остальные необходимые показатели вычисляются по формулам 29 – 31:

 

                                                                  (29)

 

                                          (30)

 

                                              (31)

 

сравнивается с при степенях свободы и уровне значимости a (обычно a = 0,05). Если > , то уравнение регрессии значимо, то есть построенная модель адекватна фактической временной тенденции.

 

 

  1. Анализ сезонных колебаний 

Уровень сезонности оценивается с помощью:

  1. индексов сезонности;
  2. гармонического анализа.

Индексы сезонности показывают, во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня, вычисляемого по уравнению тенденции f(t). При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет. Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года. Индексы сезонности – это, уровень по существу, относительные величины координации, когда за базу сравнения принят либо средний уровень ряда, либо уровень тенденции. Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции.

Если тренда нет или он незначителен, то для каждого месяца (квартала) индекс рассчитывается по формуле 32:

 

                                                                                    (32)

 

где - уровень показателя за месяц (квартал) t;

       - общий уровень показателя.

Как отмечалось выше, для обеспечения устойчивости показателей можно взять больший промежуток времени. В этом случае расчет производится по формулам 33:

 

                                       (33)

 

где - средний уровень показателя по одноименным месяцам за ряд лет;

          Т   - число лет.

При наличии тренда индекс сезонности определяется на основе методов, исключающих влияние тенденции. Порядок расчета следующий:

  1. для каждого уровня определяют выровненные значения по тренду f(t);
  2. рассчитывают отношения ;
  3. при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 34:

 

                   ,(Т - число лет).                  (34)

 

Другим методом изучения уровня сезонности является гармонический анализ. Его выполняют, представляя временной ряд как совокупность гармонических колебательных процессов.

Для каждой точки этого ряда справедливо выражение, записанное в виде формулы 35:

 

                 (35)

 

при t = 1, 2, 3, ... , Т.

Здесь - фактический уровень ряда в момент (интервал) времени t;

f(t)     – выровненный уровень ряда в тот же момент (интервал) t

  - параметры колебательного процесса (гармоники) с номером n , в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки.

Общее число колебательных процессов, которые можно выделить из ряда, состоящего из Т уровней, равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник. Параметры гармоники с номером n определяются по формулам 36 –38:

 

  1. ;                                                                       (36)

 

  1.                                                      

                                                                                                (37)

     при n=1,2,...,(T/2 – 1);

 

 

3)                               (38)

 

 

    1.   Анализ взаимосвязанных рядов динамики

В простейших случаях для характеристики взаимосвязи двух или более рядов их приводят к общему основанию, для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста.

Коэффициенты опережения по темпам роста – это отношение темпов роста (цепных или базисных) одного ряда к соответствующим по времени  темпам роста (также цепным или базисным) другого ряда. Аналогично находятся и коэффициенты опережения по темпам прироста.

Анализ взаимосвязанных рядов  представляет наибольшую сложность  при изучении временных последовательностей. Однако нередко совпадение общих тенденций развития может быть вызвано не взаимной связью, а прочими неучитываемыми факторами. Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций, а после этого провести анализ взаимосвязи по отклонениям от тренда. Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление связи между признаками.

Под автокорреляцией понимается зависимость  последующих уровней ряда от предыдущих. Проверка на наличие автокорреляции осуществляется по критерию Дарбина – Уотсона (формула 39):

Информация о работе Статистические ряды динамики