Автор: Пользователь скрыл имя, 13 Марта 2012 в 16:20, курсовая работа
В первой главе рассмотрим: понятие и виды средних величин; история становления и развития метода средних; направление, цели и задачи применение средних в статистике.
Во второй главе рассмотрим виды средних: степенные средние (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая, средняя кубическая); структурные средние (мода и медиана).
В третей, аналитической главе, проведём анализ среднедушевого дохода населения за последние 5 лет. На конкретных примерах покажем применение средних величин.
27
ВВЕДЕНИЕ
Развитие рыночных отношений в стране, дальнейшее продвижение экономики по пути реформ невозможно без обоснованного статистического анализа экономических процессов. В этих условиях экономическая работа требует специальных знаний обработки исходного цифрового материала, определения содержания тех или иных показателей хозяйственной деятельности предприятия, методов их расчета. И с достаточным основанием можно утверждать, что ни один расчет не обходится без использования метода средних.
Область применения и использования средних величин в статистике довольно широка. В средних величинах отображаются важнейшие показатели товарооборота, товарных запасов, цен. Средними величинами характеризуются качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др. Расчет средних показателей необходим при составлении любого экономического отчета, пояснительной записки к бухгалтерской отчетности, проведении экспресс-анализа отчетности хозяйствующего субъекта, специального исследования, например, расчет средней стоимости имущества в налогообложении, средней стоимости основных фондов, среднесписочной численности работников, средней заработной платы, средней или модальной цены товара, среднего дохода населения и т.д. Поэтому изучение темы «Средние величины, их применение в статистическом анализе» является очень актуальной.
В современных условиях развития экономики нашей страны, ее многогранности статистико-экономический анализ приобретает особое значение. Поэтому владение методом средних, сегодня необходимо не только исследователю-статистику, но и бухгалтеру, экономисту, руководителю предприятия.
В экономическом анализе использование средних величин является действенным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, изыскания скрытых и неиспользуемых резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.
Правильное понимания сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.
Настоящая работа посвящена рассмотрению средних величин. Она состоит из трех частей. Первые две главы являются теоретическими а третья глава является аналитической.
В первой главе рассмотрим: понятие и виды средних величин; история становления и развития метода средних; направление, цели и задачи применение средних в статистике.
Во второй главе рассмотрим виды средних: степенные средние (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая, средняя кубическая); структурные средние (мода и медиана).
В третей, аналитической главе, проведём анализ среднедушевого дохода населения за последние 5 лет. На конкретных примерах покажем применение средних величин.
И так основные задачи данной работы:
охарактеризовать средние величины в социально - экономическом анализе;
рассмотреть виды средних величин и правила их применения;
с помощью средних величин проанализировать величину дохода населения.
В основу данной работы легли следующие учебники: «Статистика» под ред. Гусарова , «Статистика» под ред. И. Елисеевой, «Теория статистики» под ред. Р. Шмойловой и др.
Глава 1: Теоретические аспекты метода средних величин.
1.1. Понятие и виды средних величин.
Статистическое исследование независимо от его масштабов и целей всегда завершается расчетом или анализом различных по виду и форме выражения статистических показателей.
Статистический показатель представляет собой количественную характеристику социально-экономических явлений и процессов в условиях качественной определенности. Качественная определённость показателя заключается в том, что он непосредственно связан с внутренним содержанием изучаемого явления или процесса, его сущностью.
Статистические показатели по форме выражения делятся:
Абсолютные;
Относительные;
Средние;
Средние величины являются наиболее распространённой формой статистических показателей, используемых в социально-экономических исследованиях.
Средние величины - это обобщающие показатель, характеризующий типический уровень явления в конкретных условиях места и времени. Он выражает уровень признака, типический для каждой единицы совокупности. 1
Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.
1. Гусаров В.М. Статистика. – «ЮНИТИ», М., 2003г., стр. 52.
Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике, варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики. Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.
Важнейшее свойство средней величины заключается в том, что она отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.
В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.
В современных условиях развития рыночных отношений в экономике средние служат инструментом изучения объективных закономерностей социально-экономических явлений. Однако в экономическом анализе нельзя ограничиваться лишь средними показателями, так как за общими благоприятными средними могут скрываться и крупные серьезные недостатки в деятельности отдельных хозяйствующих субъектов, и ростки нового, прогрессивного. Так, например, распределение населения по доходу позволяет выявлять формирование новых социальных групп. Поэтому наряду со средними статистическими данными необходимо учитывать особенности отдельных единиц совокупности.
Средние в общественных явлениях обладают относительным постоянством, т.е. в течение какого-то определенного промежутка времени однотипные явления характеризуются примерно одинаковыми средними.
Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины.
Средние величины делятся на 2 больших класса:
степенные средние; К ним относятся такие известные и часто применяемые виды, как средняя гармоническая величина, средняя геометрическая, средняя арифметическая, средняя квадратическая и средняя кубическая. Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Если рассчитывать все виды степенных средних для одних и тех же данных, то их значения окажутся неодинаковыми. Тогда действует правило мажорантности средних: с увеличением показателя степени средних увеличивается и сама средняя величина ().
средняя хронологическая; Применяется для определения среднего уровня в моментных рядах динамики. Используется в социально-экономической статистике для определения средней численности населения и среднего размера остатков, а также для других показателей, исчисляемых на определенные моменты времени
структурные средние, в качестве которых рассматриваются мода и медиана. Они определяются лишь структурой распределения. Поэтому их именуют «структурными позиционными средними». Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.
Из выше сказанного можно сделать вывод, что средние показатели играют большую роль в экономическом анализе. Они заменяют большое число индивидуальных значений признака, обнаруживают общие свойства, присущие всем единицам совокупности. Это, в свою очередь, позволяет избежать случайных причин и выявить общие закономерности, обусловленные общими причинами. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.
1.2. История становления и развитие метода средних.
Средняя — это один из распространенных приемов обобщений.2 Важность средних величин для статистической практике и науки отмечалось в работах многих ученых. Так, английский экономист В. Петти (1623-1677) при рассмотрении экономический проблем широко использовал средние величины. В частности, он предлагал использовать в качестве меры стоимости затраты на среднее дневное пропитания одного взрослого работника. Его не смущала абстрактность средней, то, что данные, относящиеся к конкретным людям, могут не совпадать со средней величиной. Он считал устойчивость средней величины как отражение закономерности изучаемых явлений и полагал, что можно реконструировать информацию при отсутствии достаточного объема исходных данных (метод косвенных расчетов).
Весьма широко применял средние и относительные величины английский ученый Г. Кинг (1648 - 1712) при анализе данных населении Англии (средний доход на одну семью, средний душевой доход и т.д.).
Теоретические разработки бельгийского статистика А. Кетле (1796-1874), внесшего значительный вклад в разработки теории устойчивости статистических показателей, основаны на противоречивости природы социальных явлений — высоко устойчивых в массе, вместе с тем сугубо индивидуальных.
Согласно Кетле, постоянные причины действуют одинаково (постоянно) на каждое изучаемое явления. Именно они делают эти явления похожими друг на друга, создают общее для всех их закономерности.
Следствием учения А. Кетле об общих и индивидуальных причинах явилось выделения средних величин в качестве основного приема статистического анализа. Он подчеркивал, что статистические средние
2. Гусаров. В.М. Статистика. – «ЮНИТИ», М., 2003г., стр. 52
представляют собой не просто меру математического измерения, а категорию объективной действительности. Типическую, реально существующую среднюю он отождествлял с истинной величиной, отклонения от которой могут быть только случайными.
Ярким выражением изложенного взгляда на среднюю является его теория « среднего человека ». Средний человек — это человек, наделенный всеми качествами в среднем размере. Этот человек будет иметь средний рост и вес, среднюю быстроту бега, среднюю смертность и рождаемость, среднюю наклонность к браку и самоубийству, преступлениям, к добрым делам и т.д. Для Кетле « средний человек » не простая абстракция. Это идеал человека. Не состоятельность антинаучной теории « среднего человека » Кетле была доказана в русской статистической литературе еще в конце 19 века.
Информация о работе Средние величины, их применение в статистическом анализе