Автор: Пользователь скрыл имя, 22 Декабря 2012 в 02:17, курсовая работа
Ответом на подобные вопросы являются данные о размерах общественных примеров – статистические данные. Эти данные и разрабатываются общественной наукой – статистикой.
И предметом статистики и являются размеры массовых общественных явлений в конкретных условиях места и времени. Но она не только устанавливает факты, но и объясняет, почему они проявляются так, а не иначе, используя дополнительные статистические данные.
Массовые общественные явления,
Ответом на подобные вопросы являются данные о размерах общественных примеров – статистические данные. Эти данные и разрабатываются общественной наукой – статистикой.
И
предметом статистики и
Статистике
принадлежит большая роль в
информационно-аналитическом
Важнейшими задачами статистики в наше время, условиях являются:
Данные статистики очень важны для других общественных наук (для
экономики, социологии, политологии).
Для
решения задач статистики на
различных стадиях
Целью данной курсовой работы является приобретение навыков по расчету и анализу обобщающих статистических показателей, характеризующих закономерности исследуемых экономических явлений, и получение практических навыков в применении положений теории конкретных исследований.
В связи с недостаточностью финансовой информации о предприятии, объектом примерного исследования были взяты произвольные числа о 30-ти разные предприятиях.
Глава
1. Показатели вариации
1.1 Показатели
вариации и их значения в статистике
Термин «вариация» произошел от латинского
varito –изменение, колеблемость, различие.
Однако не всякое различие называется
вариацией. Под вариацией в статистике
понимают такие количественные изменения
величины исследуемого признака в
пределах однородной совокупности, которые
обусловлены перекрещивающимся влиянием
действия различных факторов.
Исследование вариации в статистике имеет важное значение, т.к. дает возможность оценить степень воздействия на данный признак других варьирующих признаков. Определение вариации необходимо при организации выборочного наблюдения, построения статистических моделей, разработке материалов экспертных опросов и т.д.
Средняя величина – это обобщающая характеристика признака изучаемой совокупности. Она не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней. Поэтому для характеристики колеблемости признака используют показатели вариации.
Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратичное отклонение.
1. Самым распространенным
абсолютным показателем
Этот показатель прост для расчета, что и обусловило его широкое распространение. Однако, он улавливает только крайние отклонения и не отражает отклонений всех вариант в ряду.
2. Для обобщающей характеристики
распределения отклонений
- невзвешенное среднее линейное отклонение
- взвешенное среднее линейное отклонение
Среднее линейное отклонение как меру вариации признака применяют в статистической практике редко, т.к. во многих случаях этот показатель не устанавливает степень рассеивания.
3. Меру вариации более
объективно отражает
- невзвешенная или - взвешенная
4. Корень квадратный из дисперсии s «среднего квадрата отклонений» представляет собой среднее квадратическое отклонение:
Среднее квадратическое отклонение (СКО) выражается в тех же единицах измерения, что и признак ( в литрах, тоннах, рублях, %-х и т.д.). СКО является мерилом надежности средней. Чем меньше СКО, тем лучше средняя арифметическая отражает собой представляющую совокупность.
К относительным показателям, позволяющим сравнивать характер рассеивания в различных распределениях, относятся следующие:
3.Коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средней величины.
Если n>33% , то это говорит о большой колеблемости признака в изучаемой совокупности.
Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения – атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.
Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит названиевариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.
Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.
Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.
Самыми простыми признаками вариации являются минимум и максимум – это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:
где k – число вариантов значений признака. Частоты удобно заменять частостями – wi. Частость – относительный показатель частоты – может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:
Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.
Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax – Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.
Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели
вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.
Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:
– абсолютное значение (модуль) отклонения варианта от средней арифметической; f–частота.
Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая – в рядах с неравными частотами.
Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации – дисперсию.
Дисперсия (σ2) – средняя из квадратов отклонений вариантов значений признака от их средней величины:
Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).
В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:
Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.
В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков – среднее линейное и среднее квадртическое отклонение – не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.
При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:
Информация о работе Показатели вариации и их значения в статистике