Автор: Пользователь скрыл имя, 04 Октября 2011 в 21:25, курсовая работа
Для технических систем характерна жесткая функциональная интеграция всех элементов, поэтому в них нет второстепенных элементов, которые могут быть некачественно спроектированы и изготовлены. Таким образом, современный уровень развития НТП значительно ужесточил требования к техническому уровню и качеству изделий в целом и их отдельных элементов. Системный подход позволяет объективно выбирать масштабы и направления управления качеством, виды продукции, формы и методы производства, обеспечивающие наибольший эффект усилий и средств, затраченных на повышение качества продукции.
Введение………….………………………………………………………......2
Статистические методы управления качеством производственных процессов……………………………………3
1.1.Обеспечение точности технологических процессов…………………….3
1.2. Статистическое установление допуска………………………………….4
1.3.Оценка точности технологической системы (измерительный анализ)……………………………………………………………….................9
1.4.Оценка качества технологических процессов (анализ возможности процесса)……………………………………………………………………...11
1.5.Виды и методы статистического регулирования качества
технологических процессов…..……………………………………..……….13
1.6.Статистические методы регулирования качества технологических процессов при контроле по количественному признаку…………………..15
1.7.Статистические методы регулирования качества технологических процессов при контроле по альтернативному признаку…………………..16
1.8.Анализ причин несоответствия (брака) показателей качества процесса……………………………………………………………………….16
Статистические методы контроля качества продукции ………………………………………………………………………….19
2.1.Общие понятия о статистическом контроле качества…………..……..19
2.2.Уровни дефектности …………………………………………………….21
2.3.Планы и оперативные характеристики планов выборочного контроля ……………………………………………………………………………..…..22
2.4.Принципы применения стандарта на статистический приемочный контроль по альтернативному признаку ……………………………24
2.5.Статистический приемочный контроль по количественному признаку ………………………………………………………………………….25
Выводы..……………………………………………………28
Список использованной литературы ……………………
p – число уменьшающих звеньев.
n + p = m – 1 – замыкающее звено.
Сначала обрабатывают
базовую плоскость 1, затем по настройке
от этой базы – плоскость 2 по размеру
A2 и плоскость 3 по размеру A1.
Поверочный
расчет
Решение
задач производится по формулам:
;
Проектный
расчет
Заключается
в распределении допуска
В
рамках метода max-min этот расчет осуществляется
двумя способами.
Применяется,
когда составляющие размеры близки
по величине или принадлежат одному
интервалу диаметров в таблице
допусков.
Все составляющие звенья изготавливают по одному квалитету точности. Требуемый квалитет определяется следующим образом.
Допуск
составляющего размера
D – среднегеометрический размер для интервала
по условию
T
– в мкм. D – в мм.
, ,
Предельное отклонение одного размера определяется по формулам:
При
этом следует соблюдать
условие:
Метод неполной взаимозаменяемости. При использовании этого метода требуемая точность замыкающего звена обеспечивается у заранее обусловленной части объектов путем включения в размерную цепь составляющих звеньев без их выбора, подбора или изменения их значений. В основу метода положен вероятностный расчет допуска замыкающего звена.
Влияние точности технологической системы на качество производственных процессов было замечено давно. Но статистическое обоснование вариабельности системы, зависящей от различных, в большинстве своем случайных, производственных факторов, дал известный американский ученый В. Шухарт только в 20-м веке. Он выявил, что вариации (отклонения) в системе по своему происхождению вызываются двумя принципиально различными причинами: общими и специальными.
Общими причинами считаются те, которые являются неотъемлемой частью данного процесса, то есть внутренне ему (процессу) присущие. Общие причины связаны с точностью поддержания параметра и условий осуществления процесса, с идентичностью условий на входах и выходах процесса и т.д. Эти причины являются результатом совместного воздействия большого количества случайных величин, каждая из которых вносит относительно малый вклад в результирующую вариацию системы. Именно отсутствие доминирующих по значению причин и дает относительную стабильность процесса. Совокупность малых вариаций создает устойчивую технологическую систему.
Специальными причинами вариаций считаются воздействия на процесс (или на систему) внешних факторов, внутренне не присущих системе и не предусмотренных нормальным ходом процесса. Как правило, в результате воздействия специальных причин и происходит отклонение параметров от заданных значений параметров.
Разделение причин вариаций на два указанных вида определяет и разные методы борьбы с вариациями. В.Шухарт выдвинул два основных принципа борьбы с вариациями:
- искать не виновников брака, а вовлекать всех причастных к поиску и устранению причин несоответствий (отклонению параметров за границы допустимых значений),
- искать источники
Таким образом, стабилизировать процесс - это сделать его устойчивым к внешним воздействиям, что и является главной задачей статистических методов управления процессами.
Рассмотрим на примере
Суммарную погрешность ωо, или поле рассеяния исследуемого размера, можно выразить в виде следующей функциональной зависимости:
ω0 = f (∆y, ε, ∆н, ∆u, ∆Т, Σ∆ф),
где ∆y – погрешность, вызванная упругими деформациями технологи-
ческой системы,
ε – погрешность, вызванная установкой заготовки,
∆н – погрешность, связанная с настройкой режущего инструмента,
∆u – погрешность, вызванная размерным износом режущего инструмента,
∆Т − погрешность, связанная с температурными деформациями технологической системы,
Σ∆ф – суммарная погрешность формы обрабатываемой поверхности.
Дадим краткую оценку каждой из составляющих погрешностей механической обработки.
Погрешность ∆y возникает в результате упругих деформаций звеньев технологической системы под влиянием нестабильности сил резания. Колебания элементов системы связаны с изменением глубины резания в процессе обработки, вызванным различной твердостью обрабатываемого материала по длине или диаметру заготовки. Кроме того, для разных заготовок не сохраняется одна и та же предварительная величина настройки инструмента на размер (глубину резания). Одновременно на эти причины накладываются деформации звеньев технологической системы, вызванные затуплением режущих кромок инструмента. Учитывая многочисленность причин упругих деформаций, распределение погрешности ∆y можно принять по нормальному закону распределения.
Аналогичный характер
установкой заготовки ε, представляющаяся собой сумму погрешностей базирования εб, погрешности закрепления εз и погрешности положения εпр, вызываемой неточностью приспособления.
Погрешность, связанная с
Погрешность, вызванная
Погрешность размера,
Суммарная погрешность формы Σ∆ф вызывается геометрическими неточностями станка, деформациями заготовки под влиянием сил закрепления и неравномерным по различным сечениям заготовки упругим отжатием звеньев технологической системы. Ее можно отнести к систематической погрешности.
Определение суммарной погрешности механической обработки можно проводить с использованием методов взаимозаменяемости, представив каждую погрешность как звено размерной цепи, а погрешность ω0 как замыкающее звено этой цепи.
Под технологической системой, точность которой мы оцениваем, понимается не любая технологическая система в данном производственном процессе, а конкретная технологическая система (станок, приспособление, инструмент, деталь), в которой при механической обработке меняются только заготовки. Если данная деталь обрабатывается на всех станках данного участка или цеха, если в механической обработке использованы все приспособления и режущий инструмент участка для обработки на имеющемся технологическом оборудовании, тогда можно судить о точности технологической системы данного участка или цеха. Очевидно, что погрешность отдельной технологической системы ниже, чем погрешность технологической системы участка. Таким образом, чтобы принять решение о правомерности использования для обработки деталей по данному техпроцессу любого подходящего
станка
на данном участке (токарном, фрезерном,
шлифовальном и т.д.) с использованием
соответствующей номенклатуры приспособлений
и режущего инструмента, необходимо сравнивать
допускаемые по чертежу отклонения на
размер деталей с погрешностью технологической
системы всего участка.
Для оценки качества технологического процесса требуется сравнение допуска на размер с полем его рассеяния в конкретной технологической системе. Несмотря на то, что именно суммарная погрешность процесса изготовления является наиболее представительным значением поля рассеяния технологической системы, на практике таким сравнением пользуются редко, так как расчет суммарной погрешности процесса является исключительно трудоемкой операцией. Гораздо проще определить поле рассеяния какого-либо размера детали при ее изготовлении в конкретном технологическом процессе путем обработки результатов экспериментальных исследований.
Наиболее эффективным способом исследования распределения размера параметра является построение гистограммы. Гистограмма распределения – это графическое отображение вариабельности процесса. Для построения гистограммы необходимо собрать необходимые данные о процессе. Рассмотрим порядок построения гистограммы и методы статистической обработки результатов на следующем примере.
Информация о работе Статистические методы контроля качества продукции