Применение факторного анализа в психодиагностике

Автор: Пользователь скрыл имя, 18 Января 2012 в 14:00, курсовая работа

Описание работы

Целью моей работы было ознакомиться с методом факторного анализа, его функциями, задачами и целями использования в психодиагностическом процессе.

Содержание

Введение 3
1. История развития и области применения факторного анализа. 6
1.1. Краткий очерк истории развития факторного анализа. 6
1.2. Области применения факторного анализа. 10
2. Основные теоретические понятия факторного анализа. 13
2.1. Факторная матрица. Интерпретация факторов. 13
2.2. Косоугольная система координат и факторы 2-го порядка. 19
2.3. Основные теории факторного анализа:
- двухфакторная;
- многофакторная;
- иерархическая. 20
3. Применение факторного анализа на практике. 30
3.1. Требования к организации факторного анализа. 30
3.2. Разработка психодиагностического теста с применением факторного анализа на примере опросника “Шестнадцать
личностных факторов (16PF)” Р.Кэттелла. 35
Заключение 39
Список литературы 40
Приложение 43

Работа содержит 1 файл

Психодиагностика курсовая работа Соловьева А.В. (готово).doc

— 219.00 Кб (Скачать)

    Вообще  говоря, конечный результат обоих  методов, центроидного и главных  факторов, еще не может устроить психологов. В поисках содержательно  значимых методов психологи создали различные теории, надеясь найти такой единственный метод, который был бы одинаково хорош при исследовании интеллекта, личности, физических экспериментов и любых параметров, с которыми приходится сталкиваться психологу.

 

     1.2. Области применения факторного анализа

    Методы  факторного анализа нашли применение главным образом в психологии. Причиной этому был тот факт, что  факторный анализ зародился в  психологии и формализм этой дисциплины тесно “… связан с психологической  концепцией ментальных факторов; даже специалисту-статистику трудно заметить и установить связь между методами факторного анализа и методами обычной математической статистики” /20, с.16/.

    Решение, полученное методами факторного анализа, может послужить основой при  формулировании некоторой научной гипотезы; возможно и обратное: методами факторного анализа ищется подтверждение существующей гипотезы. Теория Спирмена является иллюстрацией второго подхода. Спирмен показал, что если между парными корреляциями имеются определенные взаимосвязи, то может быть выписана система линейных уравнений, связывающих все рассматриваемые параметры, генеральный фактор и по одному дополнительному характерному фактору на каждый параметр. Эти взаимосвязи и позволяют дать статистическое обоснование двухфакторной теории. Если набор психологических параметров не удовлетворяет условиям существования указанных взаимосвязей, то может быть постулирована более сложная гипотеза, требующая уже несколько генеральных факторов для адекватного статистического описания системы параметров.

    Одна  из наиболее ранних работ, связанных  с расширением сферы приложения факторного анализа, была проделана  в 1950 г. Т.Келли; в ней предлагался  метод достижения максимальной социальной полезности каждого индивидуума  при сохранении индивидуальных свобод и прав. Во время второй мировой войны факторный анализ широко применялся различными военными службами США в связи с решением проблем классификационных проверок, классификации и распределения личного состава. Разумеется, психологи и по сей день продолжают развивать и применять методы факторного анализа.

    Многие  психологи предприняли интенсивные  исследования, пытаясь методами факторного анализа выделить небольшое число  тестов, возможно более полно описывающих  умственную деятельность человека. Обычно работы такого рода включают факторизацию большого набора тестов, результатом которой являются несколько общих факторов. Далее от набора тестов отбираются те, которые наилучшим образом описывают факторы (возможен и синтез “наилучших” тестов из исходных); отобранные тесты считаются прямыми измерителями “факторов мозга”. Конечно, эти тесты лишь в той мере являются действительными измерителями факторов, в какой их считают “правильными” психологи. Факторные тесты должны быть “чистыми” тестами и сильно отличаться друг от друга, покрывая своей системой весь спектр умственной деятельности.

    Извлечению  факторов из большого набора тестов было посвящено несколько крупных  работ. Из наиболее ранних исследований подобного рода следует отметить работу Спирмена и Холзингера о выявлении отдельных черт характера и работу Терстоуна, посвященную изучению умственных способностей. Из большого потока исследований последующих лет, касающихся выделения специфических психологических факторов, следует упомянуть отдельно работы Д.Гилфорда (исследование интеллекта) и Р.Кэттелла (теория личностных черт).

    Столь же широкое применение, как и при  исследовании интеллекта, факторный  анализ получил и в других областях психологии, в частности при изучении темперамента, создании клинической терапии  и т.д.

    За  последние годы факторный анализ все более широко начал применяться  и в других областях знания: в  социологии, метеорологии, медицине, географии, экономике и др.

    В факторном анализе при исследовании конкретных массивов информации существует возможность использовать различные модели, или, иначе, различные виды факторных решений. На основании этой неопределенности факторного анализа некоторые ученые ставили под сомнение его полезность как орудия научного исследования. Очевидно, однако, что точно также подобного обвинения заслуживают и другие прикладные науки, поскольку и в них имеются теоретические альтернативы.

    За  всю историю развития факторного анализа психологи и статистики разработали несколько типов  факторных решений. Сторонник очередной теории аргументировал обычно ее полезность возможностью интерпретации психологических экспериментов. Сильнейшие эмоции, характерные для одного периода развития факторного анализа, остроумно выразил Куртон: “Факторную теорию можно определить как математически разумную гипотезу. Специалист в области факторного анализа – это субъект, одержимый некой навязчивой идеей о природе умственных способностей или личности. Применяя высшую математику к исследуемому предмету, он доказывает, что его оригинальная точка зрения верна и неизбежна. Обычно он доказывает также, что все другие специалисты в факторном анализе – опасные сумасшедшие и единственное их спасение состоит в том, чтобы принять его теорию; только в этом случае выяснится истина об их болезни. Поскольку противники никогда не поддерживают такое обвинение, то он обзывает их безнадежными и устремляется в области математики, наверняка им не известные; тем самым доказывается не только необходимость, но и достаточность неизлечимости оппонентов”/20, с.21/.

 

     2. Основные теоретические понятия факторного анализа

    2.1. Факторная матрица.

    Факторный анализ – это ветвь математической статистики. Его цели, как и цель других разделов математической статистики, заключается в разработке моделей, понятий и методов, позволяющих анализировать и интерпретировать массивы экспериментальных или наблюдаемых данных вне зависимости от их физической формы.

    Одной из наиболее типичных форм представления  экспериментальных данных является матрица, столбцы которой соответствуют  различным параметрам, свойствам, тестам и т.п., а строки – отдельным объектам, явлениям, режимам, описываемым набором конкретных значений параметров. На практике размеры матрицы оказываются достаточно большими: так, число строк этой матрицы может колебаться от нескольких десятков до нескольких сотен тысяч (например, при социологических обследованиях), а число столбцов – от одного – двух до нескольких сотен. Непосредственный, “визуальный”, анализ матриц такого размера невозможен, поэтому в математической статистике возникло много подходов и методов, предназначенных для того, чтобы “сжать” исходную информацию, заключенную в матрице, до обозримых размеров, извлечь из исходной информации наиболее “существенное”, отбросив “второстепенное”, “случайное”.

    При анализе данных, представленных в форме матрицы, возникают два типа задач. Задачи первого типа имеют целью получить “короткое описание” распределения объектов, а задачи второго – выявить взаимоотношения между параметрами.

    Следует иметь в виду, что основной стимул для появления указанных задач заключается не только и не столько в желании коротко закодировать большой массив чисел, а в значительно более принципиальном обстоятельстве, имеющем методологический характер: коль скоро удалось коротко описать большой массив чисел, то можно верить, что вскрыта некая объективная закономерность, обусловившая возможность короткого описания; а ведь именно поиск объективных закономерностей и является основной целью, ради которой, как правило, и собираются данные.

    Упомянутые  подходы и методы обработки матрицы данных отличаются тем, какого типа задачи обработки данных они предназначены решать, и тем, к матрицам какого размера они применимы.

    Что же касается проблемы короткого описания связей между параметрами при  среднем числе этих параметров, то в данном случае соответствующая корреляционная матрица содержит несколько десятков или сотен чисел и сама по себе она еще не может служить “коротким описанием” существующих связей между параметрами, а должна с этой целью подвергнуться дальнейшей обработке.

    Факторный анализ как раз и представляет собой набор моделей и методов, предназначенных для “сжатия” информации, содержащейся в корреляционной матрице. В основе различных моделей факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта или явления, на самом же деле существуют внутренние (скрытые, не наблюдаемые непосредственно) параметры или свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами. Задача факторного анализа – представить наблюдаемые параметры в виде линейных комбинаций факторов и, может быть, некоторых дополнительных, “не существенных” величин – “помех”. Замечательным является тот факт, что, хотя сами факторы не известны, такое разложение может быть получено и, более того, такие факторы могут быть определены, т.е. для каждого объекта могут быть указаны значения каждого фактора.

    Факторный анализ, независимо от используемых методов, начинается с обработки таблицы интеркорреляций, полученных на множестве тестов, известной как корреляционная матрица, а заканчивается получением факторной матрицы, т.е. таблицы, показывающей вес или нагрузку каждого из факторов по каждому тесту. Таблица 1 представляет собой гипотетическую факторную матрицу, включающую всего два фактора.

    Факторы перечисляются в верхней строке таблицы от более значимого к  менее значимому, а их веса в каждом из 10 тестов даны в соответствующих  столбцах.

Таблица 1

Гипотетическая факторная матрица 

Тест Фактор I Фактор II
1.Словарный 0,74 0,54
2.Аналогии 0,64 0,39
3.Завершение  предложений 0,68 0,43
4.Восстановление  порядка слов в предложении 0,32 0,23
5.Понимание  прочитанного 0,70 0,50
6.Сложение 0,22 -0,51
7.Умножение 0,40 -0,50
8.Арифметические  задачи 0,52 -0,48
9.Составление  уравнений 0,43 -0,37
10.Завершение  числовых рядов 0,32 -0,25
 

     Оси координат. Принято представлять факторы геометрически в виде осей координат, относительно которых каждый тест может быть изображен в виде точки. Рис. 1 поясняет эту процедуру. На этом графике каждый из 10 тестов, приведенных в табл.1, отображен в виде точки относительно двух факторов, которые соответствуют осям I и II. Так, тест 1 представлен точкой с координатами 0,74 по оси I и 0,54 по оси II. Точки, представляющие остальные 9 тестов, построены аналогичным способом, с использованием значений весов из табл. 1.

     Следует заметить, что положение осей координат  не фиксировано данными. Исходная таблица  корреляций определяет лишь положение тестов (т.е. точек на рис. 1) относительно друг друга. Те же точки можно нанести на плоскость с любым положением координатных осей. По этой причине при проведении факторного анализа обычно вращают оси до тех пор, пока не получают наиболее приемлемого и легко интерпретируемого отображения.  
 
 
 
 
 
 
 
 
 
 
 
 

                
 
 
 
 
 
 
 
 
 
 

    Рис. 1. Гипотетическое факторное  отображение, показывающее веса двух групповых  факторов по каждому  из 10 тестов. 

    На  рис. 1 полученные после вращения оси  I’ и II’ показаны пунктирными линиями. Это вращение выполнено в соответствии с предложенными Терстоуном критериями положительного многообразия и простой структуры. Первый предполагает вращение осей до положения, при котором исключаются все значимые отрицательные веса. Большинство психологов считают отрицательные факторные нагрузки логически несоответствующими тестам способностей, так как такая нагрузка означает, что чем выше оценка индивидуума по специфическому фактору, тем ниже будет его результат по соответствующему тесту. Критерий простой структуры, в сущности, означает, что каждый тест должен иметь нагрузки по как можно меньшему числу факторов.

    Выполнение  обоих критериев дает факторы, которые  можно наиболее легко и однозначно интерпретировать. Если тест имеет  высокую нагрузку по одному фактору и не имеет значимых нагрузок по другим факторам, мы можем кое-что узнать о природе этого фактора, изучив содержание данного теста. Напротив, если тест имеет средние или низкие нагрузки по шести факторам, то он мало что скажет нам о природе любого из них.

    На  рис. 1 хорошо видно, что после вращения осей координат все вербальные тесты (1-5) располагаются вдоль или очень  близко к оси I’, а числовые тесты (6-10) тесно группируются вокруг оси II’. Новые факторные нагрузки, измеренные относительно повернутых осей, приведены в табл. 2. Факторные нагрузки в табл. 2 не имеют отрицательных значений, за исключением пренебрежительно малых величин, явно относимых к ошибкам выборки. Все вербальные тесты имеют высокие нагрузки по фактору I’ и практически нулевые – по фактору II’. Числовые тесты, напротив, имеют высокие нагрузки по фактору II’ и пренебрежимо низкие – по фактору I’. Таким образом, вращение координатных осей существенно упростило идентификацию и называние обоих факторов, а также описание факторного состава каждого теста. На практике число факторов часто оказывается больше двух, что, разумеется, усложняет их геометрическое представление и статистический анализ, но не изменяет существа рассмотренной процедуры. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Применение факторного анализа в психодиагностике