Автор: Пользователь скрыл имя, 26 Июля 2011 в 11:00, шпаргалка
Многолучевая интерференция – участие в интерференции более 2 когерентных лучей.
В случае многолучевой интерференции по сравнению с двухлучевой происходит резкое увеличение яркости светлых интерференционных полос с одновременным уменьшением их ширины. Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления, нанесенных на отражающую поверхность.
Оно доминирует в случае макроскопических масс. Но в мире элементарных частиц, ввиду малости их масс, это взаимодействие ничтожно.
в). Слабое взаимодействие. Слабое взаимодействие вызывает, например, β-распад радиоактивных ядер и, наряду с электромагнитными силами, объясняет поведение лептонов. Оно является короткодействующим, радиус действия порядка 10-16 см. Интенсивность слабого взаимодействия гораздо меньше интенсивности электромагнитного взаимодействия
г)
Сильное (ядерное) взаимодействие.
Сильное взаимодействие обеспечивает
самую сильную связь элементарных частиц,
в частности, связь между нуклонами в атомных
ядрах. Оно присуще большинству элементарных
частиц, так называемых адронов (протон,
нейтрон, гипероны, мезоны и т.д.). Сильное
взаимодействие - короткодействующее,
радиус его действия порядка 10-13
см. Сильное взаимодействие не зависит
от знака электрического заряда взаимодействующих
частиц, т.е. обладает зарядовой независимостью.
Билет №26
2) Дифракция ренгеновских лучей на пространственной решетке. Формула Вульфа-Брегга. Исследование структуры кристаллов.
Обычные дифракционные решетки, у которых период имеет величину порядка длины световой волны, для наблюдения дифракции рентгеновских лучей неприемлемы, т.к. длины рентгеновских волн в 104 раз меньше световых волн. Пространственной дифракционной решеткой для рентгеновских лучей могут служить кристаллы, у которых расстояние между рассеивающими центрами с длиной волны рентгеновских лучей. В кристаллах атомы расположены упорядочено, образуя трехмерную решетку. Рентгеновские лучи возбуждают атомы кристаллической решетки, вызывая появление вторичных волн, которые интерферируют подобно вторичным волнам от щелей дифракционной решетки. Разбив кристалл на ряд параллельных плоскостей ,проходящих через узлы решетки, можно выделить в нем большое число параллельных атомных слоев.
Пусть падающий
пучок рентгеновских лучей
А=2 d sinθ Условие максимума для междуатомной интерференции будет 2 d sinθ = kλ, где к = 1,2,3,.- причем разным к соответствуют разные углы скольжения 9. Для дифракции рентгеновских лучей в кристаллах выражение 2dsinθ=kλ называется формулой Вульфа-Брэгга. Изучая дифракцию рентгеновских лучей, можно по измеренным углам 9 для дифракционных максимумов и по известной длине волны монохроматического рентгеновского излучения исследовать внутреннюю структуру кристаллов.
3) Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.
Тела, нагреты до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение является самым распространенным в природе, совершается за счет энерги теплового движения атомов и молекул в-ва (т.е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные (инфракрасные). Тепловое излучение – практически единственный тип излучения, который может быть равновесным. Предположим, что нагретое тело помещено в полость, ограниченное идеально отражающей оболочкой. С течением времени, в р-тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т.е. тело в единицу времени будет поглощать столько же сколько и излучать.
Испускательная и поглощательная способность. Спектральной хар-кой теплового излучения тела служит спектральная плотность энергетической светимости (испускательная
способность), равная , где
-- энергия электромагнитного
испускаемого за единицу времени с единицы площади поверхности тела в интервале частот от
Спектральная плотность
Дж/(м2с)
Спектральной хар-кой поглощения электромагнитных волн телом служит спектральная поглощательная способность
(поглощательная способность)..
Он показывает, какая доля энергии dW падающего на пов-ть тела эл. магн излучения с частотами от поглощается телом.
Эта величина – безразмерная.
Законы теплового излучения абсолютно черного тела (Закон Стефана Больцмана). Тело наз-ся черным (абсолютно черным), если оно при любой температуре полностью поглощает всю энергию падающих на него электромагнитных волн независимо от их частоты, поляризации (упорядочивания светового в-ра) и направления распространения. Следовательно, коэф-т поглощения абсолютно черного тела (АЧТ) тождественно равен единице. Спектральная плотность энергетической светимости АТЧ зависит только от частоты νизлучения и термодинамической температуры Т тела. Закон Кирхгофа: Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности н.з. от природы тела; оно является для всех тел универсальной ф-цией частоты.(длины волны) и температуры: . Для
черного тела, поэтому из закона К.
вытекает, что ля черного тела равна
Таким образом, универсальная функция Кирхгофа есть не что иное, как спектральная
плотность энергетической светимости черного тела. Энергетическая светимость АТЧ зависит только от температуры, т.е. Энергетическая светимость АТЧ пропорциональна четвертой степени его термодинамической температуры:
, где σ-- постоянная Больцмана. Этот
закон – закон Стефана-Больцмана. Задача оты скания вида функции Кирхгофа (выяснения спектрального состава излучения ЧТ): Эксперименты показали, что зависимость при разных
температурах ЧТ имеет вид см. рис.. При разный частотах а в области больших частот
(правые ветви кривых вдали от максимумов), зависимость от частоты имеет вид
где a1 -- постоянная величина.
Существование
на каждой кривой более или менее
ярко выраженного максимума
температуры тела максимум смещается в
область больших частот. Площадь, ограниченная
кривой и осью абсцисс, пропорциональна
энергетической светимости ЧТ. Поэтому в соответствии с законом Стефана Больцмана она
возрастает пропорционально
T4 .
27
2) Интерференция света. Пространственная и временная когерентность. Оптическая длина пути и оптическая разность хода. Способы наблюдения интерференционных картин.
Явление,
при котором происходит
Два колебательных процесса называются когерентными, если разность фаз Δφ=φ1 - φ2 складывающихся колебаний остается постоянной в течение времени, достаточного для наблюдений.
Свет состоит из последовательности кратковременных импульсов (цугов волн) со средней длительностью τ, фаза которых имеет случайную величину. Пусть средняя длина цугов равна l0, очевидно, что взаимодействовать между собой могут только те цуги волн, пространственное расстояние между которыми l ког < l0, в противном случае в точке наблюдения цуги, между которыми рассматривается взаимодействие, просто не встретятся. Величина l ког=l0 называется длиной когерентности, и она определяет максимально допустимую разность хода между взаимодействующими волнами, при которой еще может наблюдаться явление интерференции. А время, равное средней длительности излучения цугов, называется временем когерентности t ког=< τ >. В течение этого времени начальная фаза волны сохраняет свою постоянную величину. Время и длина когерентности связаны между собой очевидным соотношением
l ког = с*t ког
Оптическая длина пути.
L = S*n, S - геометрическая длина пути, n – показатель преломления среды.
Оптическая разность хода – разность оптических длин, проходимых волнами.
Δ = L2 - L1 = S2*n2 – S1*n1
Способы получения интерференционных картин.
Метод
Юнга. Свет от ярко освещено щели падает
на две щели играющие роль когерентных
источников.
Зеркала
Френеля. Свет от источника падает расходящимся
пучком на 2 плоских зеркала, расположенных
под малым углом. Роль когерентных источников
играют мнимые изображения источника.
Экран защищен от прямого попадания лучей
заслонкой.
Бипризма
Френеля. Свет от источника преломляется
в призмах, в результате чего за бипризмой
распространяются световые лучи, как бы
исходящие из мнимых когерентных источников.
Зеркало
Ллойда. Точечный источник находится
близко к поверхности плоского зеркала.
Когерентными источниками служат сам
источник и его мнимое изображение.
3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (закон Стефана-Больцмана, Вина, Рэлея-Джинса).
Тепловое излучение. Тела, нагреты до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение является самым распространенным в природе, совершается за счет энерги теплового движения атомов и молекул в-ва (т.е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные (инфракрасные). Тепловое излучение – практически единственный тип излучения, который может быть равновесным. Предположим, что нагретое тело помещено в полость, ограниченное идеально отражающей оболочкой. С течением времени, в р-тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т.е. тело в единицу времени будет поглощать столько же сколько и излучать.
Законы теплового излучения абсолютно черного тела (Закон Стефана Больцмана). Тело наз-ся черным (абсолютно черным), если оно при любой температуре полностью поглощает всю энергию падающих на него электромагнитных волн независимо от их частоты, поляризации (упорядочивания светового в-ра) и направления распространения. Следовательно, коэф-т поглощения абсолютно черного тела (АЧТ) тождественно равен единице. Спектральная плотность энергетической светимости АТЧ зависит только от частоты νизлучения и термодинамической температуры Т тела. Закон Кирхгофа: Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности н.з. от природы тела; оно является для всех тел универсальной ф-цией частоты.
(длины волны) и температуры: . Для
черного тела, поэтому из закона К.
вытекает, что ля черного тела равна
Таким образом, универсальная функция Кирхгофа есть не что иное, как спектральная
плотность энергетической светимости черного тела. Энергетическая светимость АТЧ зависит только от температуры, т.е. Энергетическая светимость АТЧ пропорциональна четвертой степени его термодинамической температуры:
, где σ-- постоянная Больцмана. Этот
закон – закон Стефана-Больцмана.
следствие ф-лы Планка. Согласно квантово теории Планка, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями -- квантами, причем энергия ванта пропорциональна частоте колебания
постоянная Планка. Т.к. излучение испускается порциями, то энергия осциллятора (стоячей волны) εможет принимать лишь определенные дискретные значения, кратные целому числу эл-тарн порций энергии Ф-ла Планка (нахождение универсальной
функции Кирхгофа):
спектральные плотности энергетической светимости ЧТ, X — длина волны, (О — круговая частота, с - скорость света в вакууме, к -постоянная Больцмана, Т - термодинамическая температура, h - постоянная Планка, % — постоянная Планка, дел. на 2ж =
1.05 • 1(Г34 Дж ■ с . Следствие: если
Планка следует ф-ла Релея-Джинса:
. В области больших частот и единицей в знаметеле.
тогда получим ф-лу эта ф-ла совпадает с флой , причем
40. Закон Вина. Опираясь на законы термо- и электродинамики, Вин установил зависимость длины волны λmax , соответствующей максимуму функции rλ,T , от температуры Т. Согласно закону смещения Вина,
Т.е. длина волны Лтах , соответствующая
максимальному значению спектральной плотности энергетической светимости ЧТ, обратно пропорциональна его термодинамической температуре, b—постоянная
Вина = 2.9-10- м-К . Закон Вина - закон смещения т.к. он показывает смещение положения максимума функции Гд j по мере
возрастания температуры
в область коротких длин волн. Он
объясняет, почему при понижении
температуры нагретых тел в их
спектре все сильнее