Автор: Пользователь скрыл имя, 26 Июля 2011 в 11:00, шпаргалка
Многолучевая интерференция – участие в интерференции более 2 когерентных лучей.
В случае многолучевой интерференции по сравнению с двухлучевой происходит резкое увеличение яркости светлых интерференционных полос с одновременным уменьшением их ширины. Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления, нанесенных на отражающую поверхность.
Билет №9.
2) Интерференция света. Длина и время когерентности. Оптическая длина пути и оптическая разность хода лучей. Способы получения интерференционных картин.
Явление, при
котором происходит пространственное
перераспределение энергии
Два колебательных процесса называются когерентными, если разность фаз Δφ=φ1 - φ2 складывающихся колебаний остается постоянной в течение времени, достаточного для наблюдений.
Свет состоит из последовательности кратковременных импульсов (цугов волн) со средней длительностью τ, фаза которых имеет случайную величину. Пусть средняя длина цугов равна l0, очевидно, что взаимодействовать между собой могут только те цуги волн, пространственное расстояние между которыми l ког < l0, в противном случае в точке наблюдения цуги, между которыми рассматривается взаимодействие, просто не встретятся. Величина l ког=l0 называется длиной когерентности, и она определяет максимально допустимую разность хода между взаимодействующими волнами, при которой еще может наблюдаться явление интерференции. А время, равное средней длительности излучения цугов, называется временем когерентности t ког=< τ >. В течение этого времени начальная фаза волны сохраняет свою постоянную величину. Время и длина когерентности связаны между собой очевидным соотношением
l ког = с*t ког
Оптическая длина пути.
L = S*n, S - геометрическая длина пути, n – показатель преломления среды.
Оптическая разность хода – разность оптических длин, проходимых волнами.
Δ = L2 - L1 = S2*n2 – S1*n1
Способы получения интерференционных картин.
Метод
Юнга. Свет от ярко освещено щели падает
на две щели играющие роль когерентных
источников.
Зеркала Френеля. Свет от источника падает расходящимся пучком на 2 плоских зеркала, расположенных под малым углом. Роль когерентных источников играют мнимые изображения источника. Экран защищен от прямого попадания лучей заслонкой.
Бипризма Френеля. Свет от источника преломляется в призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых когерентных источников.
Зеркало
Ллойда. Точечный источник находится
близко к поверхности плоского зеркала.
Когерентными источниками служат сам
источник и его мнимое изображение.
3) Волновые свойства частиц. Соотношение неопределенности Гейзенберга. Уравнение Шредингера.
Для описания квантовых систем вводится волновая функция ψ(x,y,z,t). Она определяется таким образом, что вероятность dw того что частица находится в элементе объема dV была равна: dw = | ψ^2|dV.Физический смысл имеет не сама функция, а квадрат ее модуля которым задается интенсивность волн Де Бройля.
Волновая функция,
характеризующая вероятность
Для описания микрочастиц
используются то волновые, то корпускулярные
представления. Поэтому им нельзя приписывать
все свойства частиц и волн. Согласно
соотношению неопределенностей
Гейзенберга микрочастица е может иметь
одновременно и определенную координату
(x,y,z) и определенную соответствующую проекцию
импульса (px,py,pz), причем неопределенности
этих величин удовлетворяют условиям,
т.е. произведение координаты и соответствующей
ей проекции импульса не может быть меньше
величины порядка h. Из соотношения
следует, что, например, если частица находится
в состоянии с точным значением координаты,
то в этом состоянии проекция ее импульса
оказывается совершенно неопределенной,
и наоборот.
i*ћ* ∂ψ/ ∂t = - ћ^2 *Δψ/ 2m + U(x,y,z,t)* ψ
m – масса микрочастицы, Δ - оператор Лапласа (в декартовых координатах оператор Лапласа имеет вид Δ= ∂^2/∂x^2 + ∂^2/∂y^2 + ∂^2/∂z^2), U(x,y,z,t) − функция координат и времени, описывающая воздействие на частицу силовых полей.
Уравнение называется общим уравнением Шредингера. Оно дополняется условиями, накладываемыми на функцию Ψ :
1) Ψ − конечная, непрерывная и однозначная.
2) производные от Ψ по x, y, z, t непрерывны.
3) функция
|Ψ|^2 должна быть интегрируема.
ћ^2 *Δψ/ 2m + (E - U(x,y,z,t))* ψ = 0
Это уравнение
не содержит времени и называется
стационарным уравнением
Шредингера.
Билет №10
2)Явление, при
котором происходит
Интерференция - одно из явлений, в котором проявляются волновые свойства света. Необходимым условием интерференции волн является их когерентность.
Два колебательных процесса называются когерентными, ес-ли разность фаз складывающихся колебаний остается постоянной в течение времени, достаточного для наблюдений.
Одним из способов получения гогерентных волн является деление волны по фронту, но
две и более когерентные волны можно также получить путем деления исходной волны по амплитуде.
Именно таким
образом когерентные волны
Полосы равной
толщины возникают при
Пусть на плоскопараллельную пластину толщиной h и с показателем преломления n падает рассеянный монохроматический свет с длиной волны λ. Из условия Δ = 2nh cosβ следует, что при n,h = const разность хода зависит только от угла падения лучей β. Очевидно, что лучи, падающие под одним углом, будут иметь одну и ту же разность хода. Если параллельно пластине разместить линзу L, в фокальной плоскости которой расположен экран Э, то эти лучи соберутся в одной точке экрана
В рассеянном свете имеются лучи самых разных направлений. Лучи, падающие на пластину под углом α1, соберутся на экране в точке Р1, интенсивность света в которой определяется разностью хода Δ. Таким образом, лучи, падающие на пластину во всевозможных плоскостях, но под углом α1, создают на экране совокупность одинаково освещенных точек, расположенных на окружности с центром в точке О. Аналогично, лучи, падающие под другим углом α2, создадут на экране совокупность одинаково освещенных точек, но расположенных на окружности другого радиуса. Следовательно, на экране будет наблюдаться система концентрических окружностей, называемых линиями равного наклона.
Классическим примером полос равной толщины являются кольца Ньютона. Ньютон наблюдал интерференционные полосы воздушной прослойке между плоской поверхностью стекла и плосковыпуклой линзой с большим радиусом кривизны, прижат стеклу. При нормальном падении света на линзу интерференционные полосы имеют форму концентрических колец, при наклонном - эллипсов. Они получаются вследствие интерференции лучей, отраженных от верхней и нижней границ воздушной прослойки между линзой и стеклянной пластиной.
3) Ядерными
реакциями называются
К ядерным реакциям
относятся реакции деления, синтеза,
взаимодействия ядер с легкими частицами
и др. При протекании любой ядерной
реакции выполняются все
Ядерные реакции
могут сопровождаться как поглощением,
так и выделением энергии. Энергия
Q, выделяющаяся в результате реакции,
определяется разностью масс покоя исходных
Мi и конечных Мk
ядер и частиц:
№11
2)
Интерференция света.
Практическое применение
явления интерференции.
Интерферометры. Интерферометр
Майкельсона.
Явление интерференции света состоит в отсутствии суммирования интенсивностей световых волн при их наложении, т.е. во взаимном усилении этих волн в одних точках
пространства и ослаблении – в других. Необходимым условием интерференции волн
является их когерентность. Необходимо, кроме того, чтобы колебания векторов Е электромагнитных полей интерферирующих волн совершались вдоль одного и того же или близких направлений.
Явление интерференции света используется в спектральном анализе, для точного измерения расстояний и углов, в задачах контроля качества поверхности, для создания светофильтров, зеркал, просветляющих покрытий. На явлении интерференции основана голография.
Интерферометры – оптические приборы, основанные на явлении интерференции световых волн. Они получили наибольшее распространение как приборы для измерения длин волн спектральных линий и их структуры; для измерения показателя преломления прозрачных сред; в метрологии для абсолютных и относительных измерений длин и перемещений объектов; измерения угловых размеров звезд; для контроля формы и деформации оптических деталей и чистоты металлических поверхностей. Принцип действия основан на пространственном разделении пучка света с целью получения нескольких когерентных лучей, которые проходят различные оптические пути, а затем сводятся вместе и наблюдается результат их интерференции.
между лучами 1 и 2, возникающую из-за того, что луч 2 дважды проходит через пластину P1, а луч 1 ни одного.
3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное поглощение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна
Процесс
излучения электромагнитной
Излучение
может возникать также и в
том случае, если на возбужденный
атом действует