Автор: Пользователь скрыл имя, 23 Марта 2013 в 14:56, доклад
Калориметрией называют собрание способов количественного определения тепла, выделившегося или поглощенного при разного рода физических или химических явлениях. В начале калориметрические исследования почти исключительно относились к определению таких физических свойств тела, как теплоемкость, теплота испарения, плавления и пр. С тех же пор, когда явилась попытка измерять химическое сродство тел количеством тепла, выделяющегося или поглощаемого при их взаимодействии
Введение. 3
Калориметрия 7
Прямая калориметрия 7
Методы обратной калориметрии 8
Метод Смита 9
Метод Сайкса 12
Дифференциальная адиабатическая калориметрия 14
Импульсная калориметрия 17
Заключение 18
Министерство науки и образования Российской Федерации
Федеральное агентство по образованию
Южно-Уральский государственный университет
Реферат
на тему:
Калориметрический анализ
Выполнил:
студент ФМ-451
Мухитдинов А. А.
Проверил:
Ильин С.И
2012
Введение. 3
Калориметрия 7
Прямая калориметрия 7
Методы обратной калориметрии 8
Метод Смита 9
Метод Сайкса 12
Дифференциальная адиабатическая калориметрия 14
Импульсная калориметрия 17
Заключение 18
Калориметрией называют собрание способов количественного определения тепла, выделившегося или поглощенного при разного рода физических или химических явлениях. В начале калориметрические исследования почти исключительно относились к определению таких физических свойств тела, как теплоемкость, теплота испарения, плавления и пр. С тех же пор, когда явилась попытка измерять химическое сродство тел количеством тепла, выделяющегося или поглощаемого при их взаимодействии, и на основании этого объяснять ход и направление различных химических реакций, когда появилась, одним словом, термохимия (см.), калориметрические определения начинают играть важную роль в решении многих теоретических вопросов химии и входят во всеобщее распространение. Заводская техника также мало-помалу начинает прибегать к подобного рода определениям, напр. при суждении о теплопроизводительной способности разного рода горючих материалов и пр. В большинстве случаев калориметрические определения в последнее время ведутся по способу смешения, разработанному, главным образом, Реньо, и с теми изменениями, которые ему даны Бертело и другими. Сущность этого способа состоит в следующем: выделившееся [Для простоты и для избежания повторений будем во всей статье говорить только о тех случаях, когда тепло выделяется.] при изучении известного явления тепло употребляют на нагревание взятой в известном количестве воды или другой какой-либо жидкости и с возможной точностью определяют изменения ее на темп. Зная при этом: 1) теплоемкость взятой жидкости, 2) количество тепла, израсходованного прямой передачей на нагревание различных частей прибора, в котором ведется опыт (сосуда, в котором находится рассматриваемая жидкость, мешалки, термометра, в нее погруженных, и пр.), и, наконец, 3) сколько потеряно или приобретено тепла в течение опыта путем лучеиспускания, зная все это, мы получаем все данные для вычисления искомого количества тепла. Прибор, употребляемый для этой цели, состоит из следующих главных частей: 1) калориметр в собственном смысле, 2) ванны, 3) мешалка и 4) термометр.
Все калориметры (в зависимости от принципа измерения количества теплоты) можно условно разделить на калориметры переменной температуры, постоянной температуры и теплопроводящие. Наиболее распространены калориметры переменной температуры, в которых количество теплоты Q определяется по изменению температуры калориметрической системы:
Q=WdT, где
W - тепловое значение калориметра (т.е. кол-во теплоты, необходимое для его нагревания на 1 К), найденное предварительно в градуировочных опытах;
dT - изменение температуры во время опыта. Калориметрический опыт состоит из трех периодов;
В начальном периоде
В массивном калориметре вместо калориметрической жидкости используют блок из металла с хорошей теплопроводностью (Сu, Al, Ag) с выемками для реакционного сосуда, термометра и нагревателя. Их применяют для измерения энтальпий сгорания, испарения. адсорбции и др., но чаще всего для определения энтальпии веществ при температурах до 3000 К по методу смешения. Энтальпию вещества рассчитывают как произведение теплового значения калориметра и изменения температуры блока, измеренных после сбрасывания нагретого до нужной температуры образца в гнездо блока.
Для определения теплоемкости твердых и жидких веществ в области от 0,1 до 1000 К и энтальпий фазовых переходов используют калориметры-контейнеры (рис. 2), в которых калориметрическим сосудом служит тонкостенный контейнер (ампула для вещества) обычно небольшого размера (от 0,3 до 150 см3), изготовленный из меди. серебра. золота. платины. нержавеющей стали.
Калориметры-контейнеры, предназначенные для работы при низких температурах, кроме системы изотермических или адиабатических оболочек, защищают вакуумной рубашкой и помещают в криостат (сосуд Дьюара), заполненный в зависимости от температурной области жидким Не, Н2 или N2. Для работы при повышенных температурах калориметр помещают в термостатированную электрическую печь. Теплоемкость С = Q/DТ обычно определяют методом периодического, реже - непрерывного ввода теплоты.
Рис. 2. Адиабатический калориметр-контейнер для определения теплоемкости твердых и жидких веществ при низких температурах: 1, 2 - адиабатич. оболочки; 3 - калориметр; 4 - платиновый термометр сопротивления; 5 - нагреватель; 6 - герметичный платиновый контейнер для вещества; 7 - крышка контейнера.
Теплоемкость газов и жидкостей при постоянном давлении определяют в проточных калориметрах - по разности температур на входе и выходе стационарного потока газа или жидкости, мощности этого потока и джоулевой теплоте, выделенной электрическим нагревателем.
При измерениях небольших тепловых эффектов, а также теплоемкостей применяют двойной калориметр, имеющий две совершенно одинаковые калориметрические системы (жидкостные, массивные, тонкостенные), которые находятся при одной и той же температуре и имеют одинаковый теплообмен с оболочкой. Вместо поправки на теплообмен вводят небольшую поправку на неидентичность калориметрических систем (блоков), определяемую предварительно. При определении тепловых эффектов экзотермических реакций в одном из блоков выделяется неизвестное кол-во теплоты исследуемой реакции Qx (напр., реакции полимеризации), а в другой блок вводится известное кол-во теплоты Q так, чтобы температуры обоих блоков были равны в продолжение всего опыта, тогда Qx = Q. В случае эндотермических реакций теплота Q вводится в тот блок, в котором протекает процесс.
В калориметрах постоянной температуры, или изотермических, количество теплоты измеряют по количеству вещества, изменившего свое агрегатное состояние (плавление льда, нафталина или испарение жидкости).
Теплопроводящие калориметры (диатермические) используют в калориметрии теплового потока, в которой определение Q основано на измерении мощности теплового потока dQ/dt (t - время). К этой калориметрии относят микрокалориметрию Тиана-Кальве и дифференциальную сканирующую калориметрию. В первой записывают кривые dQ/dt =f(t) при постоянной температуре, во второй - кривые dQ/dt = f(t,I) при постоянной скорости нагревания и охлаждения.
Величину Q определяют по площади пика на кривой нагревания:
Qm = KA,
где К - калибровочная константа,
А - площадь,
т - масса вещества.
Теплопроводящие калориметры должны обладать значит. теплообменом с оболочкой, чтобы большая часть вводимой в них теплоты быстро удалялась и состояние калориметра определялось мгновенным значением мощности теплового процесса. Такие калориметры (рис. 3) представляют собой металлический блок с каналами, в которых помещаются цилиндрич. камеры, чаще всего две, работающие как дифференц. калориметр. В камере проводится исследуемый процесс, металлич. блок играет роль оболочки, температура которой может поддерживаться постоянно с точностью до 10-6 . Передача теплоты и измерение разности температур камеры и блока осуществляется с помощью термобатарей, имеющих до 1000 спаев; эдс измерительной термобатареи и соответствующий тепловой поток пропорциональны малой разности температур, возникающей между блоком и камерой, когда в ней выделяется или поглощается теплота. Чувствительность калориметров достигает 0,1 мкВт
Рис. 3. Микрокалориметр Кальве: 1 - калориметрич. камера, окруженная термоспаями детекторной и компенсационной термобатарей; 2 - блок (оболочка) калориметра; 3 - термостатирующая оболочка; 4 - тепловая изоляция; 5 - трубка для введения вещества в калориметр.
Прямая калориметрия заключается в охлаждении образца, нагретого до некоторой температуры t, превышающей температуру превращения в образце tпр. Нагретый образец, заключенный в тонкостенную оболочку, вносят в калориметр, представляющий собой специальный сосуд, содержащий жидкость (обычно воду). При охлаждении образца в калориметре происходит передача тепла от образца к калориметру и температура последнего повышается. Величина теплового эффекта превращения q может быть найдена из уравнения теплового баланса:
M[C1 (t − tпр )+ q + C2 (tпр − tк )]+ mоCо (t − tк ) = Cк (tк − tн) + Q, (2.1)
где m – масса образца, C1 , C2 – средняя теплоемкость образца при температурах выше и ниже точки превращения,
tк и tн – конечная и начальная температура калориметра,
Cк – полная средняя теплоемкость калориметра,
Q – тепловые потери калориметра в окружающую среду (находятся по специальным таблицам).
Погрешность измерения q возрастает с повышением tпр, так как при этом доля теплоты превращения уменьшается по сравнению с общим количеством теплоты, выделяемой образцом при охлаждении. Возможности рассмотренного метода ограничены, поскольку режим охлаждения в калориметре вполне определенен и может быть изменен только путем замены жидкости.
Для предотвращения испарения калориметрической
жидкости применяют «ледяные»
Прямая калориметрия не применяется для изучения превращений в твердых металлах и сплавах, характеризующихся малыми тепловыми эффектами. Для этой цели разработаны другие методы, описанные ниже, обладающие большей чувствительностью и точностью.
При обратной калориметрии холодный образец помещают в специальную установку и медленно нагревают, измеряя количество теплоты, затрачиваемой на нагревание. Методы обратной калориметрии используют при изучении необратимых процессов. Превращения, протекающие при нагреве в интервале температур, сопровождаются возрастанием теплосодержания Q и быстрым ростом производной dQ/dt , а, следовательно, и теплоемкости Cp = (dQ/dt ) *1/m (рис. 2.1,а). Так как рост dQ dt происходит до конечных значений, то тепловой эффект может быть найден интегрированием кривой dQ dt в интервале температур превращения от t1 до t2. Изотермический процесс сопровождается скачкообразным возрастанием теплосодержания при температуре превращения, чему соответствует разрыв производной dQ dt и, следовательно, разрыв температурной зависимости теплоемкости (рис. 2.1,б). В таком случае определение теплового эффекта производят другими методами.
Метод Смита
Метод, основанный на использовании постоянства теплового потока через стенку при неизменной разности температур в ней, позволяет определять среднюю в интервале температур теплоемкость сплава и тепловые эффекты превращений. Метод Смита является, по существу, разновидностью термического анализа.
Керамический стаканчик с
, где
Q – количество теплоты,
τ – время,
γ – теплопроводность стаканчика,
S – средняя площадь поверхности, пронизываемой тепловым потоком.
В действительности теплопроводность стаканчика зависит от температуры, поэтому для калибровки
калориметра применяют вещество с известной
температурной зависимостью теплоемкости.
Для определения средней
образца проводят три опыта.