Автор: Пользователь скрыл имя, 18 Февраля 2013 в 00:08, курсовая работа
Цель исследования: изучить особенности развития алгоритмического мышления учащихся 3-го класса на уроках математики.
Задачи:
На основе анализа психолого-педагогической литературы раскрыть содержание понятий «мышление», «алгоритмическое мышление».
Проанализировать программу начальной школы по математике.
Выявить педагогические условия эффективного использования алгоритмов в курсе математики начальной школы.
Провести экспериментальное исследование, направленное на определение эффективности использования алгоритмов при изучении математики в 3 классе.
ВВЕДЕНИЕ............................................................................................................. 2
Глава 1. Психолого-педагогические аспекты формирования мышления у младших школьников в процессе обучения.
§ 1. Мышление: понятие, виды операции, формы мышления………………....5
Особенности алгоритмического мышления
§ 2. Проблема формирования алгоритмического мышления в программе «Планета знаний» для 3 класса…………………………………………………10
§ 3. Алгоритмическое мышление и методы его развития…………………….17
Глава 2. Изучение уровня формирования алгоритмического мышления учащихся 3 класса.
Описание хода эксперимента и анализ полученных результатов…………...20
Заключение………………………………………………………………………23
Список литературы……………………………………………………………...25
Приложения…………………………………………………………………….
Анализ методической и математической литературы показывает, что основным способом формирования алгоритмического мышления у младшего школьника является поэтапное формирование логических приемов мышления с постепенным переходом непосредственно к элементам алгоритмизации, т.е. следует развести понятия логическое мышление и алгоритмическое мышление, хотя в основе развитого алгоритмического мышления, безусловно, лежит сформированное и развитое логическое мышление.
Основной особенностью алгоритмического мышления считается умение определять последовательность действий (алгоритм), необходимую для решения поставленной задачи. Очевидно, что потребность в подобном умении возникла достаточно давно, однако до ХХ века алгоритмическое мышление не выделялось как отдельный тип мышления. Выделять алгоритмическое мышление в качестве отдельного типа мышления стали сравнительно недавно, толчком к чему, несомненно, послужило развитие вычислительной техники.
Данный стиль характеризуется точностью, определенностью, формальностью и, как правило, связывается с теоретической деятельностью. Между тем алгоритмический стиль мышления позволяет решать задачи, возникающие в любой сфере деятельности человека, а не только в теоретической, например, в программировании или математике, как традиционно считается. Он не связан лишь с вычислительной техникой, так как самое понятие алгоритма, хотя и интуитивное, возникло задолго до появления первого компьютера. Решая большинство задач, человек, в той или иной мере, применяет алгоритмический подход, хотя отдельные этапы этого процесса могут носить ассоциативный характер» [7, с.18].
«Алгоритмическое мышление, наряду с алгебраическим и геометрическим, является необходимой частью научного взгляда на мир. В то же время оно включает и некоторые общие мыслительные навыки, полезные и в более широком контексте, например, в рамках так называемого бытового сознания. К таким относится, например, разбиение задачи на подзадачи» [8, с.7].
Итак, попытаемся коротко сформулировать различия между логическим и алгоритмическим видами мышления. Используя логическое мышление, человек оперирует обобщенными способами представления действительности, отвлекаясь от ряда частностей изучаемого явления. Это позволяет устанавливать сложные законы строения мира, обобщать наблюдаемый материал, предвидеть развитие событий. Логическое мышление иногда называют словесно-логическим, поскольку оно невозможно без использования языка, будь то естественный язык или, к примеру, язык математических символов. Логическое мышление является основой научного мышления.
Алгоритмическое мышление включает в себя ряд особенностей, свойственных
логическому мышлению, однако требует
и некоторых дополнительных качеств. Основными
из них считаются умение находить последовательность
действий, необходимых для решения поставленной
задачи и выделение в общей задаче ряда
более простых подзадач, решение которых
приведет к решению исходной задачи. Наличие
логического мышления не обязательно
(хотя и достаточно часто) предполагает
наличие мышления алгоритмического.
§ 2. Проблема формирования алгоритмического мышления в программе «Планета знаний» для 3 класса.
Особенностью программы “Планета знаний» по математике для 3-го класса является то, что она обеспечивает развитие у обучающихся познавательных универсальных действий, в первую очередь логических и алгоритмических. Развитие математической речи, логического и алгоритмического мышления, воображения, обеспечение первоначальных представлений о компьютерной грамотности.
Курс направлен на реализацию целей обучения математике в начальном звене, сформулированных в Федеральном государственном стандарте начального общего образования. В соответствии с этими целями и методической концепцией авторов можно сформулировать три группы задач, решаемых в рамках данного курса и направленных на достижение поставленных целей.
Учебные:
— формирование на доступном уровне представлений о натуральных числах и принципе построения натурального ряда чисел, знакомство с десятичной системой счисления;
— формирование на доступном уровне представлений о четырех арифметических действиях: понимание смысла арифметических действий, понимание взаимосвязей между ними, изучение законов арифметических действий;
— формирование на доступном уровне навыков устного счета, письменных вычислений, использования рациональных способов вычислений, применения этих навыков при решении практических задач (измерении величин, вычислении количественных характеристик предметов, решении текстовых задач).
Развивающие:
— развитие пространственных представлений учащихся как базовых для становления пространственного воображения, мышления, в том числе математических способностей школьников;
— развитие логического мышления — основы успешного освоения знаний по математике и другим учебным предметам;
— формирование на доступном уровне обобщенных представлений об изучаемых математических понятиях, способах представления информации, способах решения задач.
Общеучебные:
— знакомство с методами изучения окружающего мира (наблюдение, сравнение, измерение, моделирование) и способами представления информации;
— формирование на доступном уровне умений работать с информацией, представленной в разных видах (текст, рисунок, схема, символическая запись, модель, таблица, диаграмма);
— формирование на доступном уровне навыков самостоятельной познавательной деятельности;
— формирование навыков самостоятельной индивидуальной и коллективной работы: взаимоконтроля и самопроверки, обсуждения информации, планирования познавательной деятельности и самооценки.
Сформулированные задачи достаточно сложны и объёмны. Их решение происходит на протяжении всех лет обучения в начальной школе и продолжается в старших классах. Это обусловливает концентрический принцип построения курса: основные темы изучаются в несколько этапов, причем каждый возврат к изучению той или иной темы сопровождается расширением понятийного аппарата, обогащением практических навыков, более высокой степенью обобщения.
Отбор содержания опирается на Федеральный государственный стандарт начального общего образования. При этом учитываются необходимость преемственности с дошкольным периодом и основной школой, индивидуальные потребности школьников и обеспечение возможностей развития математических способностей учащихся.
При отборе содержания учитывался принцип целостности содержания, согласно которому новый материал, если это уместно, органично и доступно для учащихся, включается в систему более общих представлений по изучаемой теме. Принцип целостности способствует установлению межпредметных связей внутри комплекта «Планета знаний». Знакомство с летоисчислением и так называемой «лентой времени» в курсе математики 3 класса обусловлено необходимостью её использования при изучении исторической составляющей курса «Окружающий мир».
Важное место в курсе отводится пропедевтике как основного изучаемого материала, традиционного для начальной школы, так и материала, обеспечивающего подготовку к продолжению обучения в основной школе. Поэтому активно используются элементы опережающего обучения на уровне отдельных структурных единиц курса: отдельных упражнений, отдельных уроков, целых тем.
Использование опережающего обучения позволяет в соответствии с принципом целостности включать новый материал, подлежащий обязательному усвоению, в систему более общих представлений. Это способствует осмысленному освоению обязательного материала, позволяет вводить элементы исследовательской деятельностив процесс обучения. На уровне отдельных упражнений: наблюдения над свойствами геометрических фигур, формулирование (сначала с помощью учителя, а позже самостоятельно) выводов, проверка выводов на других объектах. На уровне отдельных уроков: сопоставление и различение свойств предметов, количественных характеристик (сопоставление периметра и площади, площади и объёма и др.), выявление общих способов действий (например, «открытие» правила умножения чисел на 10, 100, 1000).
Один из центральных принципов организации учебного материала в данном курсе — принцип вариативности — который реализуется через деление материала учебников на инвариантную и вариативную части.
Значительное место в курсе отводится развитию пространственных представлений учащихся. Своевременное развитие пространственных представлений помогает ребенку успешно адаптироваться в социальной и учебной среде и влияет на усвоение базисных алгоритмов, которые облегчают его взаимодействие с лавиной информации, которая обрушивается на него в современном обществе. Психологами установлено, что развитие пространственных представлений особенно эффективно для развития ребенка до достижения им 9-летнего возраста.
Особое значение задача развития пространственных представлений младших школьников получает в связи с проблемами обучения так называемых правополушарных детей, к которым относятся не только левши, но и дети, одинаково хорошо владеющие и левой, и правой рукой, а также правши с семейным левшеством. Психологические программы коррекции развития этих детей во многом опираются на развитие пространственных представлений.
Обучение письменным алгоритмам вычислений не отменяет продолжения формирования навыков устных вычислений, а происходит параллельно с ними. Особое внимание при формировании навыков письменных вычислений уделяется прогнозированию результата вычислений и оценке полученного результата. При этом используются приёмы округления чисел до разрядных единиц, оценка количества цифр в результате и определение последней цифры результата и другие.
Учебники предоставляют широкие возможности для освоения учащимися рациональных способов вычислений. Особое внимание уделяется оценке возможности применения разных способов вычислений и выбору наиболее подходящего способа вычислений.
Большое значение уделяется работе с текстовыми задачами. Обучение решению текстовых задач имеет огромное практическое и развивающее значение. Необходимо отметить, что развивающее значение имеют лишь новые для учащихся типы задач и задачи, решение которых не алгоритмизируется. При решении таких задач важную роль играют понимание ситуации, требующее развитого пространственного воображения, и умение моделировать условие задачи (подручными средствами, рисунком, схемой). Обучение моделированию ситуаций начинается с самых первых уроков по математике (еще до появления простейших текстовых задач) и продолжается до конца обучения в начальной школе.
Обучение по данной программе нацелено на осознанный выбор способа решения конкретной задачи, при этом осваиваются как стандартные алгоритмы, так и обобщенные способы решения типовых задач, а также универсальный подход, предполагающий моделирование условия и планирование хода решения задачи в несколько действий.
При изучении геометрического материала учащиеся овладевают навыками работы с чертёжной линейкой, угольником, циркулем, учатся изображать плоские и пространственные геометрические фигуры на клетчатой бумаге. Сравнивая геометрические фигуры, учатся классифицировать их, выдвигать гипотезы о свойствах фигур, проверять свои гипотезы. Используют геометрические представления при решении задач практического содержания и при моделировании условий текстовых задач.
Учащиеся учатся сотрудничать при выполнении заданий в паре и в группе (проектная деятельность); контролировать свою и чужую деятельность, осуществлять пошаговый и итоговый контроль, используя разнообразные приёмы; моделировать условия задач;
планировать собственную вычислительную деятельность, решение задачи, участие в проектной деятельности; выявлять зависимости между величинами, устанавливать аналогии и использовать наблюдения при вычислениях и решении текстовых задач; ориентироваться в житейских ситуациях, связанных с покупками, измерением величин, планированием маршрута, оцениванием временных и денежных затрат.
Современный уровень
развития науки и техники требует
включения в обучение школьников
знакомство с моделями и основами
моделирования, а также формирования
у них навыков алгоритмического мышления. Без
применения моделей и моделирования невозможно
эффективное изучение исследуемых объектов
в различных сферах человеческой деятельности,
а правильное и четкое выполнение определенной
последовательности действий требует
от специалистов многих профессий владения
навыками алгоритмического мышления.
Формирование у младших школьников алгоритмического
мышления, умений построения простейших
алгоритмов и моделей – одна из важнейших
задач современной общеобразовательной
школы.
Обучение школьников
умению «видеть» алгоритмы и осознавать
алгоритмическую сущность тех действий,
которые они выполняют, начинается с простейших
алгоритмов, доступных и понятных им (алгоритмы
пользования бытовыми приборами, приготовления
различных блюд, переход улицы и т.п.). В
начальном курсе математики алгоритмы
представлены в виде правил, последовательности
действий и т.п. Например, при изучении
арифметических операций над многозначными
числами учащиеся пользуются правилами
сложения, умножения, вычитания и деления
многозначных чисел, при изучении дробей
– правилами сравнения дробей, и т.д. Программа
позволяет обеспечить на всех этапах обучения
высокую алгоритмическую подготовку учащихся.
Итак, в программе и учебно-методических пособиях по математике для 3-го класса представлен материал различного направления: систематизирующий, углубляющий и расширяющий знания детей, развивающий их личность. Дидактика разного содержания позволяет учителю выбирать задания к уроку, предварительно продумывая формы и методы их решения, анализируя реальность усвоения предлагаемых заданий, избегая шаблонов. Интересные, занимательные задания соответствуют возрасту детей, а бумеранговое решение помогает им выбирать задания по желанию, интересам и возможностям, т.е. каждому ученику предоставляется право на получение достаточно полного математического образования и право на самостоятельное определение уровня выполнения заданий. Все задания направлены на развитие логического мышления, сравнение, сопоставление, выявление характерного признака, анализ, нахождение решения в нестандартных ситуациях, формирование логической цепочки. Содержание изложено таким образом, что оно требует ознакомления с конкретными способом и подходом в решении, а затем – переход к другому способу с применением элементов ранее сформированных умственных действий. Можно сказать: при выполнении заданий происходит «переливание» приемов мыслительной деятельности из одного математического действия в другое; при этом происходит совершенствование и усложнение этих действий, что обеспечивает формирование логики мышления детей.