Стохастические модели в экономике

Автор: Пользователь скрыл имя, 13 Мая 2012 в 17:37, курсовая работа

Описание работы

Цель работы - ознакомление с математическими моделями и метода-ми моделирования экономических систем, развитие умений применять эти знания на практике.
Задачи работы:
- рассмотреть стохастические модели в экономике;
- рассмотреть практическое применение стохастических моделей в экономике;
- развитие умений применять модели и методы моделирования экономических систем на практике.

Содержание

ВВЕДЕНИЕ
3
1 СТОХАСТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ
5
2 ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ СТОХАСТИЧЕСКИХ МОДЕ-ЛЕЙ В ЭКОНОМИКЕ
13
3 ПРАКТИЧЕСКАЯ ЧАСТЬ
24
ЗАКЛЮЧЕНИЕ
33
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
35

Работа содержит 1 файл

1 СТОХАСТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ.doc

— 509.50 Кб (Скачать)

      Первая принципиальная идея, с которой встречается каждый изучающий экономист – идея о взаимосвязи между экономическими переменными. Формирующийся на рынке спрос на некоторый товар рассматривается как функция его цены; затраты, связанные с изготовлением какого-либо продукта, предполагаются зависящими от объема производства; потребительские расходы могут быть функцией дохода и т.д. Все это примеры связей между двумя переменными, одна из которых (спрос на товар, производственные затраты, потребительские расходы) играет роль объясняемой переменной (или результирующего показателя), а другие интерпретируются как объясняющие переменные (или факторы-аргументы). Однако для большей реалистичности в каждое такое соотношение приходится вводить несколько объясняющих переменных и остаточную случайную составляющую, отражающую влияние на результирующий показатель всех неучтенных факторов. Спрос на товар можно рассматривать как функцию его цены, потребительского дохода и цен на конкурирующие и дополняющие товары; производственные затраты будут зависеть от объема производства, от его динамики и от цен на основные производственные ресурсы; потребительские расходы можно определить как функцию дохода, ликвидных активов и предыдущего уровня потребления. При этом участвующая в каждом из этих соотношений случайная составляющая, отражающая влияние на анализируемый результирующий показатель всех неучтенных факторов, обусловливает стохастический характер зависимости, а именно: даже зафиксировав на определенных уровнях значения объясняющих переменных, скажем, цены на сам товар и на конкурирующие с ним или дополняющие товары, а также потребительский доход, мы не можем ожидать, что тем самым однозначно определяете спрос на этот товар. Другими словами, переходя в своих наблюдениях спроса от одного временного или пространственного такта к другому, мы обнаружим случайное варьирование величины спроса около некоторого уровня даже при сохранении значений всех объясняющих переменных неизменными.

      Стохастическое  моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. Эти модели используются по трем основным причинам:

    • необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
    • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
    • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

      В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

      а) наличие совокупности;

      б) достаточный объем наблюдений;

      в) случайность и независимость  наблюдений;

      г) однородность;

      д) наличие распределения признаков, близкого к нормальному;

      е) наличие специального математического аппарата.

      Построение  стохастической модели проводится в  несколько этапов:

    • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
    • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
    • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
    • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
    • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

      Стохастический  анализ направлен на изучение косвенных  связей, т. е. опосредованных факторов (в случае невозможности определения  непрерывной цепи прямой связи). Из этого вытекает важный вывод о соотношении детерминированного и стохастического анализа: так как прямые связи необходимо изучать в первую очередь, то стохастический анализ носит вспомогательный характер. Стохастический анализ выступает в качестве инструмента углубления детерминированного анализа факторов, по которым нельзя построить детерминированную модель.

      Стохастическое  моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности опирается на обобщение закономерностей варьирования значений экономических показателей – количественных характеристик факторов и результатов хозяйственной деятельности. Количественные параметры связи выявляются на основе сопоставления значений изучаемых показателей в совокупности хозяйственных объектов или периодов. Таким образом, первой предпосылкой стохастического моделирования является возможность составить совокупность наблюдений, т. е. возможность повторно измерить параметры одного и того же явления в различных условиях.

      В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений. Это означает, что варьирование значений показателей должно происходить в пределах однозначной определенности качественной стороны явлений, характеристиками которых являются моделируемые экономические показатели (в пределах варьирования не должно происходить качественного скачка в характере отражаемого явления). Значит, второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).

      Изучаемая закономерность изменения экономических  показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной к- 
вариации). Из этого вытекает третья предпосылка стохастического анализа –достаточная размерность (численность) совокупности наблюдений, позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые связи). Уровень надежности и точности модели определяется практическими целями использования модели в управлении производственно-хозяйственной деятельностью.

      Четвертая предпосылка стохастического подхода  – наличие методов, позволяющих выявить количественные параметры экономических показателей из массовых данных варьирования уровня показателей. Математический аппарат применяемых методов иногда предъявляет специфические требования к моделируемому эмпирическому материалу. Выполнение данных требований является важной предпосылкой применяемости методов и достоверности полученных результатов.

      Основная  особенность стохастического факторного анализа заключается в том, что при стохастическом анализе нельзя составлять модель путем качественного (теоретического) анализа, необходим количественный анализ эмпирических данных.

      Методы  стохастического факторного анализа.

      1) Способ парной корреляции.

      Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями, не находящимися в функциональной зависимости, т.е. связь проявляется не в каждом отдельном случае, а в определенной зависимости.

      С помощью корреляции решаются две  главные задачи:

      - составляется модель действующих факторов (уравнение регрессии);

      - дается количественная оценка тесноты связей (коэффициент 
корреляции).

      2) Матричные модели.

      Матричные модели представляют собой схематическое  отражение экономического явления или процесса с помощью научной абстракции. Наибольшее распространение здесь получил метод анализа «затраты-выпуск», строящийся по шахматной схеме и позволяющий в наиболее компактной форме представить взаимосвязь затрат и результатов производства.

      3) Математическое программирование.

      Математическое  программирование – это основное средство решения задач по оптимизации производственно-хозяйственной деятельности.

      4) Метод исследования операций.

      Метод исследования операций направлен на изучение экономических систем, в  том числе производственно-хозяйственной  деятельности предприятий, с целью определения такого сочетания структурных взаимосвязанных элементов систем, которое в наибольшей степени позволит определить наилучший экономический показатель из ряда возможных.

      5) Теория игр.

      Теория  игр как раздел исследования операций – это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ  СТОХАСТИЧЕСКИХ МОДЕЛЕЙ  В ЭКОНОМИКЕ 

     Методы  линейного  программирования применяются для решения многих экстремальных задач, с которыми довольно часто приходится иметь дело в экономике. Решение таких задач сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин.

    Линейное  программирование основано на решении  системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимозаменяемость факторов, когда логика в расчетах, математическая логика совмещаются с логически обоснованным пониманием сущности изучаемого явления.

    С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок). В сельском хозяйстве он используется для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этим же методом решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.

    Все экономические задачи, решаемые с  применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу значит выбрать из всех допустимо возможных (альтернативных) вариантов лучший, оптимальный. Важность и ценность использования в экономике метода линейного программирования состоят в том, что оптимальный вариант выбирается из весьма значительного количества альтернативных вариантов. При помощи других способов решать такие задачи практически невозможно

    Задачи  с помощью линейного программирования решаются двумя способами: симплекс-методом и распределительном методом.

    Весьма  типичной задачей, решаемой с помощью  линейного программирования, является транспортная задача. Ее смысл заключается в минимизации грузооборота при доставке товаров широкого потребления от производителя к потребителю, с оптовых складов и баз в розничные торговые предприятия. Она решается симплекс-методом или распределительным методом. Наиболее наглядным из них является последний.

     Рассмотрим  пример постановки и решения транспортной задачи.

     Задача. На строительство четырех объектов кирпич поступает с трех заводов. Требуется найти оптимальный план перевозок. Требуемые количества в тыс.штук и тарифы в тыс. руб. представлены в таблице 1. 

Таблица 1.

Заводы                               Объекты Мощности
     1      2      3      4
1      4      5      2      2 110
2      8      1      7      6 80
3      4      2      3      1 60
Потребности      40      50      100      60 -

Информация о работе Стохастические модели в экономике