Автор: Пользователь скрыл имя, 07 Мая 2012 в 12:29, курсовая работа
Метою курсової роботи є розгляд можливості побудови моделі впливу таких економічних факторів як капітальні інвестиції на душу населення, заробітна плата та витрати на споживання на душу населення на економічну безпеку регіонів
Задачі роботи: збір інформації, побудова коефіцієнта безпеки для регіонів та для країни в цілому, здійснення прогнозу стану безпеки на наступний рік, а також аналіз отриманих результатів.
ВСТУП 4
РОЗДІЛ 1. Основи економічної безпеки 6
1.1.1. Поняття економічної безпеки 6
1.1.2 Економічна безпека регіонів 7
1.3.1 Моделювання 10
1.3.2 Прогнозування 12
РОЗДІЛ 2. Дослідження економічної безпеки 15
2.1 Напрями дослідження економічної безпеки 15
2.2 Алгоритм дослідження 16
2.3 Використання регресійного аналізу 16
2.3.1 Побудова моделі 16
2.3.2 Виявлення гетероскедастичності 19
2.3.3 Автокореляція збурень 21
2.3.4 Мультиколінеарність 22
РОЗДІЛ 3. Модель впливу бюджетних факторів на економічну безпеку регіону 25
3.1 Опис процесу моделювання та аналіз отриманих результатів 25
3.1.1 Визначення коефіцієнта економічної безпеки 25
3.1.2 Побудова моделі та перевірка на наявність гетероскедастичності, автокорельованості, мультиколінеарності 27
3.2 Побудова прогнозу на 2008 рік 31
ВИСНОВКИ 35
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ 37
ДОДАТОК А 39
ДОДАТОК Б 40
ДОДАТОК В 41
ДОДАТОК Д 42
ДОДАТОК Е 43
ДОДАТОК К 44
ДОДАТОК Л 45
ДОДАТОК М 46
ДОДАТОК М 47
Критерії виявлення гетероскедастичності розділяються на дві групи: загальні та регресійні.
Загальні критерії відрізняються тим, що при їх формуванні не використовуються припущення про характер гетероскедастичності. В цьому полягає їх перевага. Недоліком є те , що такі критерії лише виявляють наявність гетероскедастичності, але не дають інформації для розв’язання проблеми.
Регресійні критерії гетероскедастичності будуються на основі припущення, що дисперсія пропорційна функції від деякої відомої змінної:
(2.)
Критерій Глейзера
Спочатку оцінюється модель за методом найменших квадратів і знаходяться залишки . Потім будується регресія модуля залишків відносно однієї з таких функцій:
, (2.)
, (2.)
, (2.)
. (2.)
Якщо хоча б одна з регресій виявиться адекватною, то гетероскедастичність наявна.
Для
позбавлення від
Коваріаційна матриця збурень:
, де - відомі, а - невідомий коефіцієнт пропорційності.
На основі методу Глейзера:
, де - оцінки коефіцієнтів в регресії модуля залишків.
Рівняння моделі почленно ділимо на :
, де (2.)
, (2.)
, (2.)
. (2.)
Якщо розглядається модель з константою, то значення змінної обчислюється за такою формулою:
. (2.)
2.3.3 Автокореляція збурень
Модель
з автокорельованими
, де вектор збурень не
. (2.)
Наслідки автокорельованості збурень на оцінки методу найменших
квадратів:
1.Оцiнки
МНК будуть незміщеними, але
не будуть ефективними (не
2.Стандартнi оцінки коварiацiйної матриці оцінки МНК будуть зміщеними, i, як наслідок, процедури перевірки гіпотез та інтервального оцінювання, основані на стандартних статистиках, будуть некоректними.
Наявність автокореляції виявляється за допомогою критерія Дурбіна – Уотсона:
Підраховується практичне значення статистики Дарбіна – Уотсона:
. (2.)
З
таблиці Дарбіна-Уотсона
Якщо d < dL, то має місце автокореляція з додатнім ρ.
Якщо dL < d < dU, то ми не можемо зробити ніякого висновку, і цей
інтервал
називається зоною
Якщо dU < d < 4 – dU, то автокореляція відсутня.
Якщо 4 – dU < d < 4– dL, то ми не можемо зробити ніякого висновку. Цей
інтервал також є зоною невизначеності (ЗН).
Якщо 4 – dL < d < 4, то має місце автокореляція з від’ємним ρ.
На практиці, якщо вибіркове значення d потрапляє до зони невизначеності
(ЗН), то вважають, що має місце автокореляція.
При
наявності автокореляції
, де (2.)
d – статистика Дарбіна-Уотсона.
, (2.)
(2.)
Елементи j- того стовпчика матриці:
(2.)
(2.)
Якщо у вихідній моделі є постійний доданок, то перетворена модель не
матиме константи. Замість неї з’явиться змінна xo:
(2.)
(2.)
Оцінка - коефіцієнта при змінній є оцінкою постійного доданка у вихідній моделі.
Будуємо нову регресію. Вона міститиме на одну незалежну змінну більше, ніж в початковій регресії.
2.3.4 Мультиколінеарність
Термін "мультиколінеарність" означає, що в багатофакторній регресійній моделі дві або більше незалежних змінних (факторів) пов'язані між собою лінійною залежністю або, іншими словами, мають високий ступінь кореляції: .
Мультиколінеарність може виникати за різних умов:
Практичні наслідки мультиколінеарності:
Класичною ознакою мультиколінеарності є одночасна наявність високого значення R2 і незначимості t-статистики.
(2.)
У
випадку мультиколінеарності
Тому високе значення R2 і статистична незначущість деяких параметрів може свідчити про наявність мультиколінеарності.
Способи усунення мультиколінеарності:
РОЗДІЛ 3. Модель впливу бюджетних факторів на економічну безпеку регіону
3.1 Опис процесу моделювання та аналіз отриманих результатів
3.1.1 Визначення коефіцієнта економічної безпеки
Для оцінки впливу бюджетних факторів на економічну безпеку регіонів застосовується модель лінійної регресії. Використовуються такі дані по регіонах за 2001 – 2007рр.: доходи та видатки місцевих бюджетів, середньорічна чисельність населення, капітальні інвестиції на душу населення, витрати на споживання на душу населення, середня заробітна плата, валовий внутрішній продукт.
Згідно алгоритму, описаному у розділі 2, знаходиться різниця між доходами та видатками місцевих бюджетів та визначається коефіцієнт безпеки для кожного регіону, як відношення сальдо до ВВП.
Коефіцієнт безпеки по регіонах
Таблиця 3.1
Регіони | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
Автономна Республіка Крим | -0,001 | -0,025 | -0,423 | -0,604 | 0,036 | 0,057 | 0,071 |
Вінницька | -0,772 | -0,769 | -0,776 | -1,060 | 0,011 | 0,007 | 0,008 |
Волинська | -1,174 | -1,051 | -1,029 | -1,175 | 0,010 | 0,031 | 0,032 |
Дніпропетровська | 0,009 | -0,162 | -0,078 | -0,083 | -0,027 | 0,024 | 0,024 |
Донецька | -0,042 | -0,172 | -0,076 | -0,090 | -0,010 | -0,010 | -0,003 |
Житомирська | -1,037 | -0,943 | -1,055 | -1,260 | 0,014 | 0,003 | 0,005 |
Закарпатська | -1,244 | -1,317 | -1,245 | -1,268 | -0,010 | 0,014 | 0,009 |
Запорізька | -0,103 | -0,123 | -0,121 | -0,103 | -0,069 | 0,004 | 0,004 |
Івано-Франківська | -0,963 | -1,064 | -0,867 | -1,031 | 0,022 | 0,027 | 0,026 |
Київська | -0,446 | -0,695 | -0,638 | -0,735 | 0,073 | 0,035 | 0,027 |
Кіровоградська | -0,974 | -0,982 | -0,740 | -0,943 | 0,034 | 0,006 | 0,011 |
Луганська | -0,358 | -0,530 | -0,468 | -0,506 | 0,027 | -0,001 | 0,003 |
Львівська | -0,779 | -0,785 | -0,659 | -0,740 | -0,031 | 0,021 | 0,019 |
Миколаївська | -0,431 | -0,488 | -0,347 | -0,530 | -0,072 | 0,013 | 0,017 |
Одеська | -0,135 | -0,214 | -0,240 | -0,254 | -0,006 | 0,049 | 0,039 |