Законы логики

Автор: c*************@yandex.ru, 26 Ноября 2011 в 20:36, реферат

Описание работы

Без логического закона нельзя понять, что такое логическое следование и что такое доказательство. Правильное, или, как обычно говорят, логичное, мышление — это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Законы логики составляют тот невидимый каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь.

Содержание

Введение………………………………………………………………………3
1.Понятия логического закона………………………………………………5
2.Закон тождества……………………………………………………………7
3. Законы не противоречия…………………………………………………11
4.Зокан исключения третьего………………………………………….12
5. Заключения……………………………………………………….14

Работа содержит 1 файл

Копия Тематика курсовых работ и вопросы по ТГП.doc

— 121.00 Кб (Скачать)

  Сомнения  в универсальности закона

  Оба закона — и закон противоречия и закон исключенного третьего — были известны еще до Аристотеля. Он первым дал, однако, их ясные формулировки, подчеркнул важность этих законов для понимания мышления и бытия и вместе с тем выразил определенные сомнения в универсальной приложимости второго из них.

  «...Невозможно, — писал Аристотель, — чтобы  одно и то же в одно и то же время  было и не было присуще одному и  тому же в одном и том же отношении (и все другое, что мы могли  бы еще уточнить, пусть будет уточнено во избежание словесных затруднений) — это, конечно, самое достоверное из всех начал». Такова формулировка закона противоречия и одновременно предупреждение о необходимости сохранять одну и ту же точку зрения в высказывании и его отрицании «во избежание словесных затруднений». Здесь же Аристотель полемизирует с теми, кто сомневается в справедливости данного закона: «...не может кто бы то ни было считать одно и то же существующим и несуществующим, как это, по мнению некоторых, утверждает Гераклит».

  О законе исключенного третьего: «...не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».

  От  Аристотеля идет также живущая и  в наши дни традиция давать закону противоречия, закону исключенного третьего, да и другим логическим законам, три разные интерпретации.

  В одном случае закон противоречия истолковывается как принцип  логики, говорящей о высказываниях  и их истинности: из двух противоречащих друг другу высказываний только одно может быть истинным.

  В другом случае этот же закон понимается как утверждение об устройстве самого мира: не может быть так, чтобы что-то одновременно существовало и не существовало.

  В третьем случае этот закон звучит уже как истина психологии, касающаяся своеобразия нашего мышления: не удается так размышлять о какой-то вещи, чтобы она оказывалась такой и вместе с тем не такой.

  Нередко полагают, что эти три варианта различаются между собой только формулировками. На самом деле это  совершенно не так. Устройство мира и своеобразие человеческого мышления — темы эмпирического, опытного исследования. Получаемые с его помощью, положения являются эмпирическими истинами. Принципы же логики совершенно иначе связаны с опытом и представляют собой не эмпирические, а логически необходимые истины. В дальнейшем, когда речь пойдет об общей природе логических законов и логической необходимости, недопустимость подобного смешения логики, психологии и теории бытия станет яснее.

  Аристотель  сомневался в приложимости закона исключенного третьего к высказываниям о будущих событиях. В настоящий момент наступление некоторых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через сто лет в этот же день будет идти дождь», — это высказывание сейчас скорее всего ни истинно, ни ложно. Таким же является его отрицание. Ведь сейчас нет причины ни для того, чтобы через сто лет пошел дождь, ни для того, чтобы его через сто лет не было. Но закон исключенного третьего утверждает, что или само высказывание, или его отрицание истинно. Значит, заключает Аристотель, хотя и без особой уверенности, данный закон следует ограничить одними высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.

  Гораздо позднее, уже в нашем веке, рассуждения Аристотеля о законе исключенного третьего натолкнули на мысль о возможности принципиально нового направления в логике. Но об этом поговорим позже.

  В XIX в. Гегель весьма иронично отзывался  о законе противоречия и законе исключенного третьего.

  Последний он представлял, в частности, в такой  форме: «Дух является зеленым или  не является зеленым», и задавал  «каверзный» вопрос: какое из этих двух утверждений истинно?

  Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: «Дух зеленый» и «Дух не зеленый» не является истинным, поскольку оба они бессмысленные. Закон исключенного третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно.

  Гегелевская критика логических законов опиралась, как это нередко бывает, на придание им того смысла, которого у них нет, и приписывание им тех функций, к  которым они не имеют отношения. Случай с критикой закона исключенного третьего — один из примеров такого подхода.

  Сделанные вскользь, разрозненные и недостаточно компетентные критические замечания  Гегеля в адрес формальной логики получили, к сожалению, широкое хождение. В логике в конце XIX — начале XX вв. произошла научная революция, в корне изменившая лицо этой науки. Но даже огромные успехи, достигнутые логикой, не смогли окончательно искоренить тех ошибочных представлений о ней, у истоков которых стоял Гегель. Не случайно немецкий историк логики X. Шольц писал, что гегелевская критика формальной логики была злом настолько большим, что его и сейчас трудно переоценить.

  Критика закона Брауэром

  Резкой, но хорошо обоснованной критике подверг  закон исключенного третьего голландский  математик Л. Брауэр. В начале этого  века он опубликовал три статьи, в которых выразил сомнение в неограниченной приложимости законов логики и прежде всего закона исключенного третьего. Первая из этих статей не превышала трех страниц, вторая — четырех, а вместе они не занимали и семнадцати страниц. Но впечатление, произведенное ими, было чрезвычайно сильным. Брауэр был убежден, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключенного третьего, он настаивал на том, что между утверждением и его отрицанием имеется еще третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов.

  Допустим, что утверждается существование объекта с определенным свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же: «В этом множестве нет такого объекта». Закон исключенного третьего здесь справедлив.

  Но  когда множество бесконечно, то объекты  его невозможно перебрать. Если в  процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведен до конца. Закон исключенного третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не являются истинными.

  Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы  в математике. Это сразу же вызвало  резкую оппозицию многих математиков, особенно старшего поколения. «Изъять из математики принцип исключенного третьего, — писал немецкий математик Д. Гильберт, — все равно что... запретить боксеру пользоваться кулаками».

  Критика Брауэром закона исключенного третьего привела к созданию нового направления в логике — интуиционистской логики. В последней не принимается этот закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди них — доказательства путем приведения к противоречию, или абсурду.

  Интересно отметить, что еще до Брауэра сомнения в универсальной приложимости закона исключенного третьего высказывал русский философ и логик Н.А. Васильев. Он ставил своей задачей построение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и закона противоречия. По мысли Васильева, логика, ограниченная подобным образом, не способна действовать в мире обычных вещей, но она необходима для более глубокого дони-мания логического учения Аристотеля.

  Современники  не смогли в должной мере оценить  казавшиеся им парадоксальными идеи Васильева. К тому же сам он склонен был обосновывать свои взгляды с помощью аргументов, не имеющих прямого отношения к логике и.правилам логической техники, а иногда и просто путано. Тем не менее, оглядываясь назад, можно сказать, что он оказался одним из предшественников интуиционистской логики.

  3. Прочие законы

  Законы  двойного отрицания позволяют снимать  и вводить такое отрицание. Их можно выразить так:

  если  неверно, что не- А, то А; если А, то неверно, что не- А.

  Например: «Если неверно, что Аристотель не знал закона двойного отрицания, то Аристотель знал этот закон», и наоборот.

  Закон тождества

  Самый простой из всех логических законов  — это, пожалуй, закон тождества. Он говорит:

  если  утверждение истинно, то оно истинно, «если А, то А».

  Например, если Земля вращается, то она вращается  и т.п. Чистое утверждение тождества  кажется настолько бессодержательным, что редко кем употребляется.

  Древнекитайский философ Конфуций поучал своего ученика: «То, что знаешь, считай, что знаешь, то, что не знаешь, считай, что не знаешь». Здесь не просто повторение одного и того же: знать что-либо и знать, что это знаешь, не одно и то же.

  Закон тождества кажется в высшей степени  простым и очевидным. Однако и  его ухитрялись истолковывать неправильно. Заявлялось, например, будто этот закон утверждает, что вещи всегда остаются неизменными, тождественными самим себе. Это, конечно, недоразумение. Закон ничего не говорит об изменчивости или неизменности. Он утверждает только, что если вещь меняется, то она меняется, а если она остается одной и той же, то она остается той же.

  Закон контрапозиции

  «Закон  контрапозиции» — это общее название для ряда логических законов,

  позволяющих с помощью отрицания  менять местами основание  и следствие условного  высказывания.

  Один  из этих законов, называемый иногда законом  простой контрапозиции, звучит так:

  если  первое влечет второе, то отрицание второго  влечет отрицание  первого.

  Например: «Если верно, что число, делящееся  на шесть, делится на три, то верно, что  число, не делящееся на три, не делится на шесть».

  Другой  закон контрапозиции говорит:

  если  верно, что если не- первое, то не- второе, то верно, что если второе, то первое.

  Например: «Если верно, что рукопись, не получившая положительного отзыва, не публикуется, то верно, что публикуемая рукопись имеет положительный отзыв». Или другой пример: «Если нет дыма, когда нет огня, то если есть огонь, есть и дым».

  Еще два закона контрапозиции:

  если  дело обстоит так, что если А, то не- В, то если В, то не- А;

  например: «Если квадрат не является треугольником, то треугольник не квадрат»;

  если  верно, что если не- А, то В, то если не- В, то А;

  например: «Если не являющееся очевидным сомнительно, то не являющееся сомнительным очевидно».

  Законы  де Моргана

  Именем  английского логика XIX в. А. Де Моргана называются логические законы,

  связывающие с помощью отрицания  высказывания, образованные с помощью союзов «и» и «или».

  Один  из этих законов можно выразить так:

  отрицание высказывания «А и  В» эквивалентно высказыванию «не- А или не- В».

  Например: «Неверно, что завтра будет холодно  и завтра будет дождливо, если и  только если завтра не будет холодно  или завтра не будет дождливо».

  Другой  закон:

  неверно, что А и В, если и только если неверно  А и неверно  В.

  Например: «Неверно, что ученик знает арифметику или знает геометрию, если и только если он не знает ни арифметики, ни геометрии.

  На  основе этих законов, используя отрицание, связку «и» можно определить через  «или», и наоборот:

  «А  и В» означает «неверно, что не-А  или не-В»,

  «А  или В» означает «неверно, что не-А  и не-В».

Информация о работе Законы логики