Нечетная логика в управлении светофорами

Автор: Пользователь скрыл имя, 09 Декабря 2012 в 10:08, контрольная работа

Описание работы

Проблемы принятия решений в сложных условиях занимают в настоящее время особое место в информационных технологиях. Математические методы широко применяются для описания и анализа сложных экономических, социальных и других систем. Теория оптимизации создала совокупность методов, помогающих при использовании ЭВМ эффективно принимать решения при известных и фиксированных параметрах или когда параметры - случайные величины с известными законами распределения

Содержание

Введение 3
1. Нечеткая логика – математические основы 4
1.1. История нечеткой логики 4
1.2. Математический аппарат 5
1.3. Формы задания функций принадлежности 7
1.4. Нечеткий логический вывод ... 9
1.5. Гибридные методы объединения 11
2. Моделирование 13
2.1. Определение моделирования и его виды 13
2.2. Процесс моделирования 15
3. Заключение 16
4. Моделирование работы светофора с нечеткой логикой 17
5. Литература 22

Работа содержит 1 файл

САСУ - Светофоры.doc

— 421.50 Кб (Скачать)

В общем случае механизм логического вывода включает четыре этапа (в соответствии с рисунком 7): введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация.

 
Рисунок 7. Система нечеткого логического вывода.

Алгоритмы нечеткого  вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее  нечеткий вывод на примере механизма  Мамдани. Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

  1. Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как
  2. Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

Далее находятся "усеченные" функции принадлежности:

 

  1. Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

где MF(y) – функция  принадлежности итогового нечеткого  множества.

  1. Дефазификация, или приведение к четкости. Существует несколько методов дефазификации. Например, метод среднего центра, или центроидный метод:

Геометрический смысл такого значения – центр тяжести для кривой MF(y). Рисунок 8 графически показывает процесс нечеткого вывода по Мамдани для двух входных переменных и двух нечетких правил R1 и R2.

 
Рисунок 8. Схема нечеткого вывода по Мамдани.

 

    1.  Гибридные методы объединения

В результате объединения  нескольких технологий искусственного интеллекта появился специальный термин – "мягкие вычисления", который ввел Л. Заде в 1994 году. В настоящее время мягкие вычисления объединяют такие области как: нечеткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем.

Ниже приведены примеры таких объединений.

Нечеткие нейронные сети. Такие сети осуществляют выводы на основе аппарата нечеткой логики, однако параметры функций принадлежности настраиваются с использованием алгоритмов обучения нейронных сетей. Поэтому для подбора параметров таких сетей применим метод обратного распространения ошибки, изначально предложенный для обучения многослойного персептрона. Для этого модуль нечеткого управления представляется в форме многослойной сети. Нечеткая нейронная сеть, как правило, состоит из четырех слоев: слоя фазификации входных переменных, слоя агрегирования значений активации условия, слоя агрегирования нечетких правил и выходного слоя.

Адаптивные  нечеткие системы. Классические нечеткие системы обладают тем недостатком, что для формулирования правил и функций принадлежности необходимо привлекать экспертов той или иной предметной области, что не всегда удается обеспечить. Адаптивные нечеткие системы решают эту проблему. В таких системах подбор параметров нечеткой системы производится в процессе обучения на экспериментальных данных. Алгоритмы обучения адаптивных нечетких систем относительно трудоемки и сложны по сравнению с алгоритмами обучения нейронных сетей, и, как правило, состоят из двух стадий:

1. Генерация  лингвистических правил;

2. Корректировка функций принадлежности.

 Первая задача относится  к задаче переборного типа, вторая  – к оптимизации в непрерывных  пространствах. При этом возникает  определенное противоречие: для  генерации нечетких правил необходимы  функции принадлежности, а для  проведения нечеткого вывода – правила. Кроме того, при автоматической генерации нечетких правил необходимо обеспечить их полноту и непротиворечивость. Значительная часть методов обучения нечетких систем использует генетические алгоритмы.

Нечеткие запросы. Нечеткие запросы к базам данных – перспективное направление в современных системах обработки информации. Данный инструмент дает возможность формулировать запросы на естественном языке, например: "Вывести список недорогих предложений о съеме жилья близко к центру города", что невозможно при использовании стандартного механизма запросов. Для этой цели разработана нечеткая реляционная алгебра и специальные расширения языков SQL для нечетких запросов.

Нечеткие  ассоциативные правила. Нечеткие ассоциативные правила – инструмент для извлечения из баз данных закономерностей, которые формулируются в виде лингвистических высказываний. Здесь введены специальные понятия нечеткой транзакции, поддержки, и достоверности нечеткого ассоциативного правила.

Нечеткие  когнитивные карты. Нечеткие когнитивные карты были предложены Б. Коско в 1986 г. и используются для моделирования причинных взаимосвязей, выявленных между концептами некоторой области. В отличие от простых когнитивных карт, нечеткие когнитивные карты представляют собой нечеткий ориентированный граф, узлы которого являются нечеткими множествами. Направленные ребра графа не только отражают причинно-следственные связи между концептами, но и определяют степень влияния (вес) связываемых концептов. Активное использование нечетких когнитивных карт в качестве средства моделирования систем обусловлено возможностью наглядного представления анализируемой системы и легкостью интерпретации причинно-следственных связей между концептами. Основные проблемы связаны с процессом построения когнитивной карты, который не поддается формализации. Кроме того, необходимо доказать, что построенная когнитивная карта адекватна реальной моделируемой системе. Для решения данных проблем разработаны алгоритмы автоматического построения когнитивных карт на основе выборки данных.

Нечеткая кластеризация. Нечеткие методы кластеризации, в отличие от четких методов (например, нейронные сети Кохонена), позволяют одному и тому же объекту принадлежать одновременно нескольким кластерам, но с различной степенью. Нечеткая кластеризация во многих ситуациях более "естественна", чем четкая, например, для объектов, расположенных на границе кластеров. Наиболее распространены: алгоритм нечеткой самоорганизации c-means и его обобщение в виде алгоритма Густафсона-Кесселя.

Также существуют объединения, такие как нечеткие деревья решений, нечеткие сети Петри, нечеткая ассоциативная память, нечеткие самоорганизующиеся карты и другие гибридные методы.

 

  1.  Моделирование
    1. Определение моделирования

Моделирование (от лат. modulus - мера, образец, норма) - исследования на лабораторных моделях физических процессов, протекающих в отдельных телах или сооружениях. Если эти модели удовлетворяют основным положениям теории подобия, то исследование их дает возможность получить количественную и качественную характеристики действительного процесса

Моделирование — исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.

Модель - объект произвольной природы, который отражает главные, с точки зрения решаемой задачи, свойства объекта моделирования.

Выделяют главные функции модели:

  • упрощение получения информации о свойствах объекта;
  • передача информации и знаний;
  • управление и оптимизация объектами и процессами;
  • прогнозирование;
  • диагностика.

В силу многозначности понятия «модель» в науке и  технике не существует единой классификации видов моделирования: классификацию можно проводить по характеру моделей, по характеру моделируемых объектов, по сферам приложения моделирования (в технике, физических науках, кибернетике и т. д.).

Можно выделить следующие виды моделирования:

  • Информационное моделирование
  • Компьютерное моделирование. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Построение  компьютерной модели базируется на абстрагировании  от конкретной природы явлений или  изучаемого объекта-оригинала и  состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

  • Математическое моделирование. Математическая модель — это эквивалент объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям, и т. д. Существует в триадах «модель-алгоритм-программа». Создав триаду «модель-алгоритм-программа», исследователь получает в руки универсальный, гибкий и недорогой инструмент, который вначале отлаживается, тестируется в пробных вычислительных экспериментах. После того, как адекватность (достаточное соответствие) триады исходному объекту установлена, с моделью проводятся разнообразные и подробные «опыты», дающие все требуемые качественные и количественные свойства и характеристики объекта.
  • Математико-картографическое моделирование
  • Молекулярное моделирование. Молекулярное моделирование — это собирательное название, относящееся к теоретическим подходам и вычислительным методам моделирования или изображения поведения молекул. Эти методы используются компьютерной химии, вычислительной биологии и науке о материалах для изучения молекулярных систем различных размеров. Простейшие вычисления могут быть выполнены вручную, но компьютеры становятся необходимы при расчётах систем любого разумного масштаба.
  • Цифровое моделирование
  • Логическое моделирование
  • Педагогическое моделирование
  • Психологическое моделирование. Психологическое моделирование — создание формальной модели психического или социально-психологического процесса, то есть формализованной абстракции данного процесса, воспроизводящей его некоторые основные, ключевые, по мнению данного исследователя, моменты с целью его экспериментального изучения либо с целью экстраполяции сведений о нём на то, что исследователь считает частными случаями данного процесса.
  • Статистическое моделирование. Статистическое и эконометрическое моделирование — исследование объектов познания на их статистических моделях; построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений или показателей, интересующих исследователя. Оценка параметров таких моделей производится с помощью статистических методов. Например: метод максимального правдоподобия, метод наименьших квадратов, метод моментов.
  • Структурное моделирование
  • Физическое моделирование.  Физическое моделирование — метод экспериментального изучения различных физических явлений, основанный на их физическом подобии. Метод состоит в создании лабораторной физической модели явления в уменьшенных масштабах, и проведении экспериментов на этой модели. Выводы и данные, полученные в этих экспериментах, распространяются затем на явление в реальных масштабах. В широком смысле, любой лабораторный физический эксперимент является моделированием, поскольку в эксперименте наблюдается конкретный случай явления в частных условиях, а требуется получить общие закономерности для всего класса подобных явлений в широком диапазоне условий.
  • Экономико-математическое моделирование
  • Имитационное моделирование. Имитационное моделирование — это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте).
  • Эволюционное моделирование. Эволюционное моделирование использует признаки теории Дарвина для построения интеллектуальных систем (методы группового учета, генетические алгоритмы).
  • Историческое моделирование
  • Нечеткое моделирование
  • Модельное моделирование.

 

    1.  Процесс моделирования

Процесс моделирования  включает три элемента:

  • субъект (исследователь),
  • объект исследования,
  • модель, определяющую отношения познающего субъекта и познаваемого объекта.

Первый этап построения модели предполагает наличие  некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. Вопрос о необходимой и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть моделью), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала. Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от исследования других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе  модель выступает как самостоятельный  объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее «поведении». Конечным результатом этого этапа является множество знаний о модели.

На третьем  этапе осуществляется перенос знаний с модели на оригинал — формирование множества знаний. Одновременно происходит переход с «языка» модели на «язык» оригинала. Процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели.

Четвертый этап — практическая проверка получаемых с помощью моделей знаний и  их использование для построения обобщающей теории объекта, его преобразования или управления им.

Моделирование — циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом  объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта или ошибками в построении модели, можно исправить в последующих циклах.

Информация о работе Нечетная логика в управлении светофорами