Глоссарий по логике

Автор: Пользователь скрыл имя, 24 Января 2013 в 18:54, реферат

Описание работы

АБСУРД (от лат. absurdus — нелепый, глупый) - в логике под А. обычно понимается противоречивое выражение. В таком выражении что-то утверждается и отрицается одновременно, как, напр., в высказывании «Тщеславие существует и тщеславия нет». Абсурдным считается также выражение, которое внешне не является противоречивым, но из которого все-таки может быть выведено противоречие. Скажем, в высказывании «Александр Македонский был сыном бездетных родителей» есть только утверждение, но нет отрицания и, соответственно, нет явного противоречия.

Работа содержит 1 файл

Словарь по логике.docx

— 70.06 Кб (Скачать)

ЗАКОН КОММУТАТИВНОСТИ (от лат. commutatio - изменение, перемена) - общее название логических законов, позволяющих менять местами высказывания, связанные конъюнкцией («и»), дизъюнкцией («или»), эквивалентностью («если и только если») и др. Эти законы аналогичны алгебраическим законам коммутативности для умножения, сложения и др., по которым результат умножения не зависит от порядка множителей, сложения - от порядка слагаемых и т. д.

 

ЗАКОН КОММУТАЦИИ (от лат. commutatio - изменение, перемена) - логический закон, говорящий о возможности перестановки двух последовательных оснований некоторого условного высказывания. Словами: первое влечет, что если второе, то третье, в том и только том случае, когда второе влечет, что если первое, то третье. Напр., утверждение «Если население Земли будет расти нынешними темпами, то, если не будет значительно поднят уровень сельскохозяйственного производства, наступит кризис» равносильно утверждению «Если уровень сельскохозяйственного производства не будет значительно поднят, то в случае роста населения Земли нынешними темпами наступит кризис».

 

ЗАКОН КОМПОЗИЦИИ (от лат. compositio — сочинение, составление) - общее название ряда логических законов, позволяющих объединять следствия определенных условных высказываний или разделять их основание.

 

ЗАКОН КОСВЕННОГО ДОКАЗАТЕЛЬСТВА - логический закон, позволяющий делать заключения об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечет противоречие. Напр.: «Если из того, что 11 не является простым числом, вытекает то, что оно делится на число, отличное от самого себя и единицы, и то, что оно не делится на такое число, то 11 есть простое число».

ЗАКОН ЛОГИКИ, см.: Логический закон.

ЗАКОН МЫШЛЕНИЯ - термин традиционной логики, обозначавший требование к логически совершенному мышлению, имеющее формальный характер, т. е. не зависящее от конкретного содержания мыслей. 3. м. назывались также законами логики или (формально-) логическими законами. Из множества З.м. выделялись т. наз. основные З.м. (логики), связанные, как считалось, с наиболее существенными свойствами мышления - такими, как определенность, непротиворечивость, последовательность, обоснованность. Основные 3. м. рассматривались как наиболее очевидные из всех утверждений логики, являющиеся чем-то вроде аксиом этой науки. Под неясное понятие основного 3. м. подводи­лись чаще всего непротиворечия закон, тождества закон, закон исключенного третьего. Нередко к ним добавляли достаточного основания принцип и принцип «обо всех и ни об одном» («сказанное обо всех предметах какого-то рода верно и о некоторых из них, и о каждом в отдельности; неприложимое ко всем предметам неверно также в отношении некоторых и отдельных из них»).

ЗАКОН ПРОТИВОРЕЧИЯ, см.: Непротиворечия закон.

ЗАКОН ЭКСПОРТАЦИИ - ИМПОРТАЦИИ (от лат. exportare -вывозить, importare — ввозить) - логический закон, говорящий о заменимости в определенных случаях конъюнкции («и») импликацией («если, то»), и наоборот. Его можно передать так: первое и второе влечет третье тогда и только тогда, когда первое влечет, что второе влечет третье.

 

ЗНАК  - материальный предмет, воспроизводящий свойства, отношения некоторого другого предмета. Различают языковые и неязыковые З. Среди последних выделяют три разновидности. 3. - копии обладают определенным сходством с представляемыми ими объектами, напр. фотографии, отпечатки пальцев и т. п. 3. - признаки связаны с обозначаемыми объектами как следствия со своими причинами, напр. дым - 3. и следствие огня. З. - символы представляют собой некоторые наглядные образы, используемые для представления отвлеченного и часто весьма значительного содержания, напр. чайка — символ Московского Художественного театра, Московский Кремль — символ Москвы и России и т. п. Языковые 3. характеризуются тем, что не функционируют независимо друг от друга. Они объединяются в систему, правила которой определяют способы построения 3. — правила грамматики или синтаксиса, а также правила приписывания знакам смысла, значения, употребления. Выделяют 3. естественных и искусственных языков. 3. естественного языка — отдельные слова, предложения, выражения, тексты и т. п. — состоят как из звуковых 3., так и из соответствующих им рукописных, типографских и иных 3. Развитие науки привело к введению в естественные языки специальных графических 3., используемых для выражения научных понятий: математических 3., химических, физических и иных 3. Из 3. такого рода строятся искусственные языки, правила которых — в отличие от правил есте­ственных языков — формулируются в явном виде. Искусственные языки находят преимущественное применение в науке, где они служат не только для общения между учеными, но и как мощное средство получения новой информации об изучаемых объектах.

 

Различают предметное, смысловое  и экспрессивное значение 3. Предмет, обозначаемый 3., называется пред­метным значением или денотатом 3.3. обозначает свой предмет, но выражает свой смысл - свойство представлять определенные стороны, черты, характеристики обозначаемого объекта, фиксирующие область приложения 3. В науке смысл 3. выражается в понятии. Под экспрессивным значением 3. понимают выражаемые с помощью данного 3. чувства и желания человека, употребившего данный 3. в определенной ситуации.

ЗНАНИЕ - результат процесса познания действительности, получивший подтверждение в практике; адекватное отражение объективной реальности в сознании человека (представления, понятия, суждения, теории). 3. фиксируется в знаках естественных и искусственных языков. Различают обыденное и научное 3. Обыденное, или житейское, 3. опирается на здравый смысл и формы повседневной практической деятельности. Обыденное 3. служит основой ориентации человека в окружающем мире, основой его поведения и предвидения.

Научное 3. отличается от обыденного своей систематичностью, обоснованностью и глубиной проникновения в сущность вещей и явлений. Наука объединяет разрозненные 3., полученные в повседневной практике, в стройные системы, опирающиеся на совокупность исходных принципов, в которых отображаются существенные связи и отношения вещей, - научные теории. Законы и теории науки сознательно и целенаправленно сопоставляются с действительностью для установления их истинности и получают обоснование в эксперименте и практических приложениях. Для фиксации научного 3. используется научный язык c точными понятиями, допускающий применение математического аппарата для обработки и сжатого выражения полученных данных. Использование особых познавательных средств позволяет науке получать знания о таких сторонах и свойствах объективного мира, которые не даны человеку в его повседневном опыте.

Научное 3. принято разделять  на эмпирическое и теоретическое. Эмпирическое 3. — результат применения эмпирических методов познания — наблюдения, измерения, эксперимента. Оно, как правило, констатирует качественные и количественные характеристики объектов и явлений. Устойчивая повторяемость связей между эмпирическими характеристиками выражается с помощью эмпирических законов, часто носящих вероятностный характер. Теоретический уровень научного 3. предполагает открытие законов, дающих возможность идеализированного восприятия, описания и объяснения эмпирических ситуаций, т. е. познания сущности явлений. Теоретическое и эмпирическое научное 3. функционирует в тесной взаимосвязи: теоретические представления возникают на основе обобщения эмпирических данных и, в свою очередь, влияют на обогащение и изменение эмпирического 3. Эти уровни 3. выражаются соответственно в эмпирическом и теоретическом языках. Термины эмпирического языка обозначают чувственно воспринимаемые или экспериментально фиксируемые предметы и явления. Предложения эмпирического языка непосредственно соотносятся с действительностью — с помощью наблюдения или эксперимента. Термины теоретического языка относятся к идеализированным, абстрактным объектам, что делает невозможной их непосредственную экспериментальную проверку.

В методологии научного познания иногда говорят о я в н о м и неявном 3. К явному относят 3., фиксированное в языке науки - в утверждениях и теориях. Неявное, т. е. не выраженное в языке, 3. состоит из навыков и умений читать чертежи, графики, пользоваться приборами и инструментами, применять явное 3. в конкретных ситуациях.

ЗНАЧЕНИЕ - содержание, связываемое с тем или иным языковым выражением. Вопрос о 3. языковых выражений исследуется лингвистикой, семиотикой и логической семантикой. В последней наибольшим признанием пользуется концепция 3., предложенная немецким математиком и логиком Г. Фреге в конце XIX в. Дальнейшую разработку эта концепция получила в трудах Б. Рассела, Р. Карнапа, К. И. Льюиса и др.

 

И

ИДЕАЛИЗАЦИЯ - процесс мысленного конструирования представлений и понятий об объектах, не существующих и не могущих существовать в действительности, но сохраняющих некоторые черты реальных объектов. В процессе И. мы, с одной стороны, отвлекаемся от многих свойств реальных объектов и сохраняем лишь те из них, которые нас в данном случае интересуют, с другой — вводим в содержание образуемых понятий такие признаки, которые в принципе не могут принадлежать реальным объектам. В результате И. возникают идеальные, или идеализированные, объекты, напр., «материальная точка», «прямая линия», «идеальный газ», «абсолютно черное тело», «инерция» и т. п. Любая наука, выделяя из реального мира свой аспект для изучения, пользуется И. и идеализированными объектами.

ИДЕМПОТЕНТНОСТИ ЗАКОН (от лат. idempotens - сохраняющий ту же степень)  - логический закон, позволяющий исключить повторение одного и того же высказывания. Его формулировка: повторение высказывания через «и» и «или» равносильно самому высказыванию.

 

ИЛЛЮСТРАЦИЯ (от лат. illustratio - прояснять) - факт или частный случай, призванный укрепить убежденность аудитории в правильности уже известного и принятого положения. Пример подталкивает мысль к новому обобщению и подкрепляет это обобщение, И. проясняет известное общее положение, демонстрирует его значение с помощью целого ряда возможных применений, усиливает эффект его присутствия в сознании аудитории. С различием задач примера и И. связано различие критериев их выбора. Пример должен выглядеть достаточно твердым, однозначно трактуемым фактом. И. вправе вызывать небольшие сомнения, но она должна особенно живо воздействовать на воображение аудитории, останавливать на себе ее внимание. И. в гораздо меньшей степени, чем пример, рискует быть неверно интерпретированной, т. к. за нею стоит уже известное положение. Различие между примером и И. не всегда является отчетливым.

 

ИМПЛИКАЦИЯ (от лат. implicatio - сплетение, от implico — тесно связываю) - логическая связка, соответствующая грамматической конструкции «если ..., то ...», с помощью которой из двух простых высказываний образуется сложное высказывание. В импликативном высказывании различают антецедент (основание) — высказывание, идущее после слова «если», и консеквент (следствие) - высказывание, идущее за словом «то». Импликативное высказывание представляет в языке логики условное высказывание обычного языка. Последнее играет особую роль как в повседневных, так и в научных рассуждениях, основной его функцией является обоснование одного путем ссылки на нечто другое.

 

ИМПЛИКАЦИЯ МАТЕРИАЛЬНАЯ - импликация в трактовке логики классической.

ИМЯ  - выражение естественного или искусственного, формализованного языка, обозначающее отдельный предмет, совокупность сходных предметов, свойства, отношения и т. п. Напр., слово «Наполеон» обозначает отдельный предмет - Наполеона Бонапарта; слово «полководец» обозначает класс людей, каждый из которых командовал войсками в сражениях; слово «белый» можно рассматривать как обозначение свойства белизны; слово «выше» — как обозначение определенного отношения между предметами.

 

ИНДИВИД (от лат. individuum - неделимое) - единичное как противоположность совокупности, массе; отдельное живое существо, особь, отдельный человек, в отличие от стада, группы, коллектива. В логике И. называют любой объект, обозначаемый единичным, или собственным, именем. Логические формальныеисчисления, содержащие общие и экзистенциальные предложения, обычно предполагают существование непустой области к.-л. индивидуальных предметов - индивидов, к которым относятся утверждения формальной системы. Природа И. для логики безразлична, требуется только, чтобы они отличались один от другого и чтобы каждый И. обозначался одним именем.

ИНДУКТИВНАЯ ЛОГИКА  - раздел логики, изучающий индуктивные умозаключения, которые отличаются от дедуктивных умозаключений тем, что вывод в них вытекает из посылок не с необходимостью, а лишь с некоторой вероятностью. Типичным примером индуктивного умозаключения является переход от единичных фактов к общему утверждению. Современная И.л. в основном занимается анализом степени подтверждения гипотезы h на основании имеющегося свидетельства е.

 

ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ  - определение, позволяющее из некоторых исходных объектов теории с помощью некоторых операций строить новые объекты теории. И.о. находят широкое применение в математике, логике и других науках.

ИНДУКЦИЯ (от лат. inductio - наведение)  - умозаключение, в котором связь посылок и заключения не опирается на логический закон, в силу чего заключение вытекает из принятых посылок не с логической необходимостью, а только с некоторой вероятностью. И. может давать из истинных посылок ложное заключение; ее заключение может содержать информацию, отсутствующую в посылках. И. противопоставляется дедукция - умозаключение, в котором связь посылок и заключения опирается на закон логики и в котором заключение с логической необходимостью следует из посылок.

 

ИНДУКЦИЯ МАТЕМАТИЧЕСКАЯ, ПОЛНАЯ МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ - средство доказательства общих положений в математике и др. дедуктивных науках. Этот прием опирается на использование двух суждений. Первое представляет собой единичное суждение и наз. базой индукции. В нем доказывается, что 1 обладает некоторым свойством (S(1)). Второе суждение - общее условное. В нем утверждается, что если произвольное число п обладает свойством S (т. наз. индуктивное предположение), то и непосредственно следующее за ним (в натуральном ряду) число n+1 также обладает этим свойством S (т. наз. индукционный шаг). Это т.наз. наследуемость свойства S в натуральном ряду чисел 1, 2, 3, 4, 5, ..., n, n+1 ... Если первое и второе положения верны, то можно сделать заключение, что и все натуральные числа обладают свойством S, что S принадлежит всему бесконечному множеству натуральных чисел.

Информация о работе Глоссарий по логике