Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций
В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах
1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем
Таблица 16.1. Фрагмент базы знаний | |
Параметр | Частотная таблица |
Контроль над эррозией | 5 5 5 6 8 10 12 14 16 15 16 |
Сооружения для отдыха | 30 30 30 30 30 30 30 30 30 30 30 |
Ирригация | 5 5 5 6 8 10 12 14 15 16 15 |
Сжигание отходов | 5 5 5 6 8 10 12 14 16 15 16 |
Строительство дорог | 15 16 15 14 12 10 8 6 5 5 5 |
Строительство каналов | 5 5 5 6 8 10 12 14 16 15 16 |
Плотины | 15 16 15 14 12 10 8 6 5 5 5 |
Туннели | 16 15 16 14 12 10 8 6 5 5 5 |
Буровые работы | 20 20 19 17 14 10 6 3 1 0 0 |
Открытые разработки | 20 20 19 17 14 10 6 3 1 0 0 |
Вырубка лесов | 15 16 15 14 12 10 8 6 5 5 5 |
Охота и рыболовство | 30 30 30 30 30 30 30 30 30 30 30 |
Растениеводство | 16 15 16 14 12 10 8 6 5 5 5 |
Скотоводство | 15 16 15 14 12 10 8 6 5 5 5 |
Химическое производство | 30 30 30 30 30 30 30 30 30 30 30 |
Лесопосадки | 5 5 5 6 8 10 12 14 16 15 16 |
Удобрения | 0 0 1 3 6 10 14 17 19 20 20 |
Регулирование животных | 5 5 5 6 8 10 12 14 15 16 15 |
Автомобильное движение | 16 15 16 14 12 10 8 6 5 5 5 |
Трубопроводы | 30 30 30 30 30 30 30 30 30 30 30 |
Хранение отходов | 15 16 15 14 12 10 8 6 5 5 5 |
Борьба с сорняками | 16 15 16 14 12 10 8 6 5 5 5 |
Течи и разливы | 30 30 30 30 30 30 30 30 30 30 30 |
Ниже приведен сценарий и протокол диалога с такой системой.
Протокол диалога (23.02.1998 - Понедельник, 11: 23: 37)
Входные данные:
Принятие решения о социо-экономико-экологической обстановке:
9. Разработать экспертную систему для консультирования и экспертных суждений при решении задач: выработки (оптимизации) политики предоставления налоговых отчетов с целью уменьшения налоговых платежей законными методами (например, прогноза налоговых последствий операций с активами); легализации доходов и уменьшения сокрытия доходов. Ядро экспертной системы взаимодействует с приложениями типа "Мастер" для решения конкретных проблем. Данные вводятся из Книги доходов и расходов. Ядро экспертной системы взаимодействует (рис. 16.1) с приложениями типа "Мастер" для решения конкретных проблем: 1) Мастер Р (регистраций) решает задачу формулировки пользователем исходного состояния, заполнения отчетных документов; 2) Мастер Т (расходов и доходов) представляет необходимую информацию о доходах и расходах; Мастер О (оптимизации) решает задачу оптимальной легализации доходов, т.е. приведения в соответствие доходов и расходов; Мастер Д (отчетных документов) решает задачу своевременного и полного представления необходимых документов в налоговые органы; Мастер К (консультаций) решает задачи эксперта-консультанта при представлении данных.
Рис. 16.1. Структура экспертной системы
10. Моделирование процесса обучения иностранному языку относится к классу плохо формализуемых и плохо структурируемых систем. Причина в том, что язык с его законами и правилами, которые имеют массу исключений, усложняющих процесс универсализации языковых явлений, плохо поддается формализации, а, следовательно, математическому описанию. Тем не менее, в последние годы уделяется большое внимание компьютерному и математическому моделированию процесса обучения иностранному языку. Известно, что лексический фонд любого языка достаточно велик и овладеть им полностью человек не в состоянии. Как правило, активный словарный запас взрослого равен приблизительно 10% всего запаса языка. Овладение языком зависит от наличия или отсутствия языковой среды. Практика показывает, например, что человек, изучающий иностранный язык вне языковой среды в течение 6 лет, должен овладеть 3000 слов. Это количество специально отобранных слов позволяет понять 95% любого текста. Специалисты в области преподавания языка (в частности, неродного) утверждают, что человек в течение одного двухчасового занятия может усвоить приблизительно 15 слов. Поэтому предполагается, что вначале можно усваивать 20-25 слов, а далее это количество уменьшить. Это мнение не распространяется на все системы обучения языку. Например, на протяжении ряда лет проводился обучающий эксперимент в Рижском педагогическом институте, который показал, что в состоянии релаксации (психического и физического расслабления, вызываемого внушением) за 20 минут студенты усваивали объем информации в виде фраз до 200 слов. Результаты и других экспериментов подтвердили, что в состоянии релаксации усваивается большой объем лексики. Она прочно запоминается и легко извлекается из памяти в процессе разговора. Существенную помощь в обучении языку может оказать компьютерное и математическое моделирование этого процесса, в частности, процесса обогащения (запоминания) словарного запаса учащихся. Выдвинем гипотезу: если человек обладает максимальной способностью запоминать слова, то словарный запас можно определять как xmax=const. Оставшийся до уровня насыщения xmax запас слов в момент времени t равен величине xmax-x(t)=y(t), где x(t) - количество слов, которые обучаемый запоминает в момент времени t (0<tT). Если исходить из гипотезы, согласно которой скорость изменения словарного запаса (темп изучения) прямо пропорционален x(t), то получаем уравнение:
x'(t)=k(xmax-x(t)) , x(0)=x0 ,
где k - коэффициент пропорциональности, отражающий динамические характеристики темпа изучения. Решая это уравнение, можно получить закон изменения словарного запаса обучаемого:
x(t)=xmax(1-exp(-kt))+x0exp(-
В гипотезе не учитывались некоторые характеристики обучаемого и факторы, тормозящие обучение. Построить и исследовать новую аналогичную модель при новой гипотезе: k зависит от x по простому закону k=ax, где a>0 - некоторый параметр. Построить банк функций k и обучить модель на них. Предположив, что k колеблется в течении всего времени занятий, например, по закону k=A(C+sint), где A - коэффициент, определяемый с помощью уровня памяти, C - число, зависящее от t, определяющее работоспособность, построить и исследовать соответствующую модель. Рассмотреть во всех случаях 3 режима моделирования: а) скорость запоминания слов известна; б) скорость запоминания слов неизвестна; в) максимальный запас слов неизвестен. Для определения уровня памяти использовать простейший тест: пользователю предлагаются буквы, которые надо запомнить, а затем воспроизвести; уровень памяти - число правильно воспроизведенных букв, деленное на число всех букв и затем умноженное на 0,06. Применить к проблеме оценки времени достижения некоторого задаваемого запаса слов, например, сдачи TOEFL. Усложнить (улучшить) и исследовать модель.
7
Информация о работе Введение в анализ, синтез и моделирование систем