Введение в анализ, синтез и моделирование систем

Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций

Описание работы

В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах

Содержание

1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем

Работа содержит 1 файл

АСИС.doc

— 1.75 Мб (Скачать)

 

1

2

...

n

1

a11

a12

...

a1n

2

a21

a22

...

a2n

...

...

...

...

...

n

an1

an2

...

ann

Матрица имеет порядок n, где n - число рассматриваемых факторов. Коэффициент aij показывает степень влияния фактора xi на фактор xj. При равном взаимном влиянии факторов, элементы матрицы можно брать как коэффициенты парной корреляции. В дальнейшем, по этой заданной матрице воздействия, на каждом временном шаге будет вычисляться новое состояние каждого фактора в зависимости от состояния других. Затем проводится формирование вектора состояния системы. При нормировании каждому фактору присваивается значение, лежащее от 0 до 1, которое зависит от максимального и минимального значений:

В различных системах факторы взаимосвязаны между собой различным образом. Определяет эту связь не только матрица воздействия, но и функциональная зависимость одного фактора от других. В данной модели для простоты использованы два основных метода взаимосвязи, а именно линейная и экспоненциальная зависимость (расширение банка функций не принципиально). Основным предназначением данной системы является проведение учебных имитационных экспериментов для получения данных, качественно характеризующих состояние экосистемы в заданный момент времени. В ходе эксперимента на экран выводятся графики, показывающие состояние каждого из факторов в тот или иной момент времени. На каждом временном шаге система вычисляет новое состояние каждого фактора. В зависимости от выбранной гипотезы взаимодействия факторов, выбираем зависимость вида fi(x1,x2,...,xn), например,

fi(x1,x2,...,xn)=a1ix1+a2ix2+...+anixn

для линейной зависимости или

fi(x1,x2,...,xn)=exp(a1ix1+a2ix2+...+anixn)

для экспоненциальной. Текущее состояние экосистемы можно представить точкой n-мерного пространства. В эксперименте экосистема пребывает во множестве таких точек, и совокупность их является траекторий развития системы. Управление экосистемой, траекторией ее развития, происходит при помощи изменения текущего состояния факторов, минимального и максимального их значений, редактирования матрицы влияния. Реализована возможность "записи и считывания экосистемы" в файл, что избавляет от необходимости каждый раз вводить параметры экосистемы. На экране отображается продолжительность эксперимента, факторы и приписываемая каждому фактору палитра цветов. После окончания эксперимента выводятся конечные значения факторов. Пользователь может сохранить их в отдельном файле для последующего использования. Реализовать соответствующую информационную систему прогнозирования.

5. Рассмотрим рынок жилья. Можно выделить два подхода к оценке жилья - использование математических и компьютерных оценок и использование экспертных оценок. В основе математической и компьютерной оценки лежит принцип статистической обработки большого массива объектов недвижимости и анализа зависимости цены объекта от его характеристик, таких как местоположение, износ, наличие улучшений и т.д. В процессе сбора данных поступает весьма разнородная информация. В случае неудовлетворительной адекватности производится корректировка модели путем изменения ее вида и введения новых переменных либо путем рекалибровки ее коэффициентов. Обычно набирается достаточное количество подобных объектов, и получаемый результат усредняется. Существует много статистических и моделирующих процедур для анализа рынка и построения модели, в частности, NCSS, AEP, Microcal Origin и др. Они достаточно сложны в использовании, хотя и предоставляют специалисту большие возможности. Имея хорошую базу данных, можно построить и настроить успешно работающую модель в течение 1-2 недель. Если же эксперту нужно разобраться в чужом рынке и начать выдавать приемлемые оценки, то среднее отклонение оценок рынка жилья по моделям относительно реальных цен не будет сильно отличаться от этой величины, причем эта оценка может выигрывать по среднему отклонению за счет фильтрации шумов во временных данных стоимости жилья. При условии достаточно полной, корректной и представительной базы данных, реальные и прогнозные средние примерно равны, и последние будут отражать наиболее вероятные цены сделок. С другой стороны, рыночная стоимость никогда не определена абсолютно точно, существует вариация стоимости каждого конкретного объекта и, соответственно, средняя вариация по базе. Моделирование рынка жилья, как правило, подстегивает инвестиции в недвижимость. В предлагаемой процедуре моделирования предпринята попытка анализа рынка жилья г. Нальчика и построения экономико-статистических оценок рынка. К сожалению, из-за отсутствия реальных данных по объему и ценам сделок, рынок пришлось моделировать на основе данных, полученных путем анализа объявлений в газетах "Синдика-Информ" и "Из рук в руки". Такие данные достаточно приблизительны и дают возможность анализа лишь предложения на рынке жилья, но этот подход вкупе с математическим и компьютерным анализом данных может оказаться одним из эффективных приемов при оценке качественного и среднестатистического состояния рынка жилья. При наличии данных не представляет трудностей переход и к проблеме анализа цен и спроса на рынке жилья. Цена на жилье зависит от ряда объективных качественных параметров, к которым можно отнести: месторасположение и время постройки дома; количество комнат; смежность комнат; общая площадь; жилая площадь; площадь кухни; этаж; этажность дома; материал стен; наличие балконов и лоджий; наличие телефона; удаленность от центра города; расположение относительно станций ж/д и автомагистралей; расположение относительно центров локального влияния (места работы); дата оценки. Цены на жилье в г. Нальчике сравнимы с ценами многих курортных и промышленных центров России. Материальную основу жилищного рынка в КБР составляет приватизированное жилье г. Нальчика. По данным различных источников в КБР, доля приватизированных квартир составляет 55 %, что близко к данным по Ставропольскому краю (56%), Ростовской области (51%), Северной Осетии - Алании (54%). Так как использовалась методика сбора данных по газетным объявлениям, необходимо было до компьютерного анализа (построения моделей) осуществить предварительную статистическую обработку. Простая процедура предварительной статистической обработки такова:

  1. Вычисляются средние величины x0 по 1, 2, 3, 4-комнатным квартирам.
  2. Вычисляются наибольшее xmax и наименьшее xmin в каждой из групп.
  3. Вычисляются наибольшие отклонения от среднего в каждой группе (или размах): dmax=| xmin (max) - x0|.
  4. Вычисляются относительные отклонения: w=dmax /x0 .
  5. Находим по таблице Стьюдента процентные точки для t(5%) и t(0,1%).
  6. Вычисляем соответствующие точки w(5%; n), w(0,1%; n).
  7. Если w(5%; n)>t(5%) (w(0,1%; n)>t(0,1%)), то отсеиваем грубое значение цены жилья и пересчитываем все заново (повторяем п.1-7).

По результатам, полученным после работы этого алгоритма, было проведено математическое и компьютерное моделирование по нахождению регрессионных зависимостей наилучшей адекватности вида: x=x(t), y=y(t), где x - оценка ($) стоимости 1 м2 жилья общей площади; y - оценка стоимости 1 м2 жилья жилой площади; t - время: t=1 - январь, t=2 - февраль и т.д. В результате проведенных достаточно громоздких и объемных расчетов (не приводимых по этой причине) выявлено, что наиболее адекватной формой модели является обратно-пропорциональная зависимость:

x(t)=1/(At+B),   y(t)=1/(Ct+D),

где регрессионные параметры A, B, C, D определяются на основе экспериментальных данных с использованием метода наименьших квадратов и линеаризующих замен:

X(t)=1/x(t), Y(t)=1/y(t).

В результате такой замены обратно-пропорциональная зависимость линеаризуется, т.е. приводится к виду:

X(t)=At+B,   Y(t)=Ct+D.

Далее, в соответствии с методом наименьших квадратов, находим неизвестные A, B, C, D. После нахождения решений A, B, C, D можно осуществить обратную замену в обратно-пропорциональных зависимостях и найти регрессионные зависимости вида (с оценкой адекватности): x=x(t), y=y(t). Получены в результате моделирования адекватные модели регрессионного типа. Оценки адекватности этих моделей примерно равны 10-6 (остаточная дисперсия). Приведем ряд построенных моделей. Модель оценки средней стоимости 1 м2 общей площади по всем типам квартир по 1997-1998 годах: x(t)=1/(0,0044-0,00006 t). Модель средней стоимости 1 м2 жилой площади по всем типам квартир по 1997-1998 годах: x(t)=1/(0,0018-0,0009 t). Для сравнительного анализа и оценки адекватности модели были проделаны соответствующие расчеты по более точным данным риэлторских групп Москве. Были получены, соответствующие модели: x(t)=1/(0,000008 t+0,00098); y(t)=1/(0,000006 t+0,00061). Итак, наилучшей формой зависимостей при моделировании рынков жилья гг. Москвы и Нальчика (возможно, и других) является зависимость

x(t)=(a+bt)-1 ,     y(t)=(c+dt)-1 .

Полученные модели можно использовать для прогнозных расчетов. Например, используя полученную для стоимости 1 м2 общей площади жилья г. Москвы формулу, можно рассчитать значение на февраль 1998 года (берем t=26):

x(26)=1/(0,000008×26+0,00098)=1/0,001188=941,75 ($).

Это достаточно близко к данным риэлторских групп г. Москвы на февраль 1998 года - 957$. Отклонение составляет 1,5 %, модель приемлема. Необходимо проделать вышеприведенную работу (информационное обследование рынка жилья в Вашем городе и сбор данных, выполнение приведенной или более "тонкой" процедуры предварительной обработки, регрессионный анализ) для рынка жилья Вашего города.

6. Пусть относительное число лиц, желающих поменять свой Е2Е-выбор номер 1 на выбор номер 2 пропорционально числу x1 тех, кто уже сделал выбор 1 и относительной привлекательности выбора 2, т.е. числу a2x1/(a1+a2). Аналогично, число лиц, желающих поменять свой выбор 2 на выбор 1, будет пропорционально числу a1x2/(a1+a2). Если k1 и k2 - указанные коэффициенты пропорциональности, то можно записать модель динамики выбора решений из двух возможных:

x'1(t)=k1x1(a1x2/(a1+a2)-a2x1/(a1+a2)),   x1(0)=x10 ,

x'2(t)=k2x2(a2x1/(a1+a2)-a1x2/(a1+a2)),   x2(0)=x20 .

На выбор решения влияют различные факторы. Осуществить системный анализ этих факторов для некоторой выбранной Вами Е2Е-системы, построить соответствующую модификацию приведенной выше модели с "расщеплением" параметров модели (например, для простоты рассуждений, аддитивно), выполнить жизненный цикл моделирования с целью: а) выработки тактики увеличения (уменьшения) k1 и k2; б) идентификации параметров k1 и k2.

7. Популяцию рассматривают в качестве структурной единицы вида и единицы эволюции. Каждая популяция характеризуется определенной численностью (частотой, процентом или долей) особей с тем или иным признаком, ее изменениями во времени. В природе происходит постоянное колебание численности популяций: число особей то сокращается, то увеличивается. Неравномерность распределения особей одного вида в ареале обитания связана с колебаниями урожаев кормов, климатических условий (влажность, температура, освещенность), возрастным и половым составом особей, интенсивностью их размножения и продолжительностью жизни. К факторам эволюции, помимо естественного отбора - процесса, в результате которого выживают и оставляют после себя потомство преимущественно особи с полезными в данных условиях признаками, - относится также изоляция, т.е. возникновение различных преград к свободному скрещиванию особей. Перечисленные факторы повышают или понижают частоту различных генотипов в популяции и значительно усложняют зависимости в уравнении эволюции. Сокращение численности за некоторые пределы может привести к вымиранию генотипов популяции или к стационарности плотности особей. Пусть популяция состоит из трех генотипов с частотами x, y, z. Будем считать, что действует только естественный отбор, и вероятности доживания особей до репродуктивного возраста каждого генотипа определяются, соответственно, как a, b, c. Уравнения эволюции можно взять в виде

xi+1=xi+xi(a-axi-byi-czi),  xo=d,

yi+1=yi+yi(b-axi-byi-czi),  y0=e,

zi+1=zi+zi(c-axi-byi-czi),  z0=m.

Вероятности a, b, c, d, e, m можно задавать (как численно, так и с помощью функции распределения вероятностей) или генерировать датчиком случайных чисел. Осуществить системный анализ аналогичной Е2Е-системы, построить соответствующую модификацию приведенной выше модели, выполнить жизненный цикл моделирования с целью а) вычисления численности генотипов в каждый момент времени; б) определения, происходит ли вымирание особей каждого генотипа или же возникает ли момент, когда численность особей каждого генотипа становится стационарной; г) определения вероятности дожития особей до репродуктивного возраста; д) выяснения, как можно использовать эту систему (исследования) в пенсионном или страховом деле, например, для расчета страхового риска.

8. Рассмотрим базу знаний и экспертную Е2Е-системы с использованием аппарата нечетких множеств и нечеткой логики, которая позволит оценивать (в том числе - качественно) социо-экономико-экологическое состояние некоторой среды по задаваемым пользователем (экспертом) количественным оценкам тех или иных параметров среды (выбираемых из базы знаний системы). Для каждого входного фактора в диалоговом режиме задаются относительные (от 0 до 1) оценки влияния этого фактора (вес фактора). После анализа этих данных (этой экологической обстановки) система принимает, на основе базы знаний, решение о состоянии социо-экономико-экологической среды, используя количественную оценку (от 0 до 1) и десятибалльную (0-9) качественную систему оценок. Для автоматического получения базы знаний используется алгоритм классификации заданного класса. Пусть имеется набор объектов, которые необходимо разделить на группы. Определяется функция f(x,y) принадлежности нечеткого отношения типа "сходство" на заданном множестве объектов (для каждой пары объектов x, y). По этой функции определяется обычное (не нечеткое) отношение на множестве объектов, по которому эти объекты разбиваются на классы эквивалентности (классы, в которые попадают только элементы, эквивалентные по данному отношению). Для создания базы знаний (какого типа?) и обучения можно использовать процедуру вида:

  1. определение начальной выборки объектов;
  2. получение частотной таблицы на основе знаний экспертов (первый анализ выборки);
  3. фиксирование начальных правил вывода по этой таблице, например, правил типа "Если ... то ... ", "Если ... и если ... то ... ", "Если ... или если ... то ... " и др.;
  4. итерация (проход) по выборке, с попыткой предсказать исход для каждого объекта по текущим правилам;
  5. если предсказание - неудовлетворительное, то модификация правила;
  6. если процент ошибок неудовлетворителен или стабилизировался, то переход к пункту 4; иначе - вывод заключения системы об обстановке. Фрагмент базы знаний (до обучения) для фактора (параметра) "Состояние почвы" приведен в таблице. 16.1.

Информация о работе Введение в анализ, синтез и моделирование систем